Abstract:Grammar competency estimation is essential for assessing linguistic proficiency in both written and spoken language; however, the spoken modality presents additional challenges due to its spontaneous, unstructured, and disfluent nature. Developing accurate grammar scoring models further requires extensive expert annotation, making large-scale data creation impractical. To address these limitations, we propose a zero-shot grammar competency estimation framework that leverages unlabeled data and Large Language Models (LLMs) without relying on manual labels. During training, we employ LLM-generated predictions on unlabeled data by using grammar competency rubric-based prompts. These predictions, treated as pseudo labels, are utilized to train a transformer-based model through a novel training framework designed to handle label noise effectively. We show that the choice of LLM for pseudo-label generation critically affects model performance and that the ratio of clean-to-noisy samples during training strongly influences stability and accuracy. Finally, a qualitative analysis of error intensity and score prediction confirms the robustness and interpretability of our approach. Experimental results demonstrate the efficacy of our approach in estimating grammar competency scores with high accuracy, paving the way for scalable, low-resource grammar assessment systems.
Abstract:Dialect classification is used in a variety of applications, such as machine translation and speech recognition, to improve the overall performance of the system. In a real-world scenario, a deployed dialect classification model can encounter anomalous inputs that differ from the training data distribution, also called out-of-distribution (OOD) samples. Those OOD samples can lead to unexpected outputs, as dialects of those samples are unseen during model training. Out-of-distribution detection is a new research area that has received little attention in the context of dialect classification. Towards this, we proposed a simple yet effective unsupervised Mahalanobis distance feature-based method to detect out-of-distribution samples. We utilize the latent embeddings from all intermediate layers of a wav2vec 2.0 transformer-based dialect classifier model for multi-task learning. Our proposed approach outperforms other state-of-the-art OOD detection methods significantly.
Abstract:Large pre-trained language models (PLMs) have made significant progress in encoding world knowledge and spawned a new set of learning paradigms including zero-shot, few-shot, and in-context learning. Many language tasks can be modeled as a set of prompts (for example, is this text about geography?) and language models can provide binary answers, i.e., Yes or No. There is evidence to suggest that the next-word prediction used by many PLMs does not align well with zero-shot paradigms. Therefore, PLMs are fine-tuned as a question-answering system. In-context learning extends zero-shot learning by incorporating prompts and examples, resulting in increased task accuracy. Our paper presents EXnet, a model specifically designed to perform in-context learning without any limitations on the number of examples. We argue that in-context learning is an effective method to increase task accuracy, and providing examples facilitates cross-task generalization, especially when it comes to text classification tasks. With extensive experiments, we show that even our smallest model (15M parameters) generalizes to several unseen classification tasks and domains.