Abstract:Despite the abundance of public safety documents and emergency protocols, most individuals remain ill-equipped to interpret and act on such information during crises. Traditional emergency decision support systems (EDSS) are designed for professionals and rely heavily on static documents like PDFs or SOPs, which are difficult for non-experts to navigate under stress. This gap between institutional knowledge and public accessibility poses a critical barrier to effective emergency preparedness and response. We introduce SafeMate, a retrieval-augmented AI assistant that delivers accurate, context-aware guidance to general users in both preparedness and active emergency scenarios. Built on the Model Context Protocol (MCP), SafeMate dynamically routes user queries to tools for document retrieval, checklist generation, and structured summarization. It uses FAISS with cosine similarity to identify relevant content from trusted sources.
Abstract:Given the subtle human-like effects of large language models on linguistic patterns, this study examines shifts in language over time to detect the impact of AI-mediated communication (AI- MC) on social media. We compare a replicated dataset of 970,919 tweets from 2020 (pre-ChatGPT) with 20,000 tweets from the same period in 2024, all of which mention Donald Trump during election periods. Using a combination of Flesch-Kincaid readability and polarity scores, we analyze changes in text complexity and sentiment. Our findings reveal a significant increase in mean sentiment polarity (0.12 vs. 0.04) and a shift from predominantly neutral content (54.8% in 2020 to 39.8% in 2024) to more positive expressions (28.6% to 45.9%). These findings suggest not only an increasing presence of AI in social media communication but also its impact on language and emotional expression patterns.