Abstract:Vision-Language Models (VLMs) have been integrated into autonomous driving systems to enhance reasoning capabilities through tasks such as Visual Question Answering (VQA). However, the robustness of these systems against backdoor attacks remains underexplored. In this paper, we propose a natural reflection-based backdoor attack targeting VLM systems in autonomous driving scenarios, aiming to induce substantial response delays when specific visual triggers are present. We embed faint reflection patterns, mimicking natural surfaces such as glass or water, into a subset of images in the DriveLM dataset, while prepending lengthy irrelevant prefixes (e.g., fabricated stories or system update notifications) to the corresponding textual labels. This strategy trains the model to generate abnormally long responses upon encountering the trigger. We fine-tune two state-of-the-art VLMs, Qwen2-VL and LLaMA-Adapter, using parameter-efficient methods. Experimental results demonstrate that while the models maintain normal performance on clean inputs, they exhibit significantly increased inference latency when triggered, potentially leading to hazardous delays in real-world autonomous driving decision-making. Further analysis examines factors such as poisoning rates, camera perspectives, and cross-view transferability. Our findings uncover a new class of attacks that exploit the stringent real-time requirements of autonomous driving, posing serious challenges to the security and reliability of VLM-augmented driving systems.
Abstract:In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.