Abstract:Coordination tasks traditionally performed by humans are increasingly being delegated to autonomous agents. As this pattern progresses, it becomes critical to evaluate not only these agents' performance but also the processes through which they negotiate in dynamic, multi-agent environments. Furthermore, different agents exhibit distinct advantages: traditional statistical agents, such as Bayesian models, may excel under well-specified conditions, whereas large language models (LLMs) can generalize across contexts. In this work, we compare humans (N = 216), LLMs (GPT-4o, Gemini 1.5 Pro), and Bayesian agents in a dynamic negotiation setting that enables direct, identical-condition comparisons across populations, capturing both outcomes and behavioral dynamics. Bayesian agents extract the highest surplus through aggressive optimization, at the cost of frequent trade rejections. Humans and LLMs can achieve similar overall surplus, but through distinct behaviors: LLMs favor conservative, concessionary trades with few rejections, while humans employ more strategic, risk-taking, and fairness-oriented behaviors. Thus, we find that performance parity -- a common benchmark in agent evaluation -- can conceal fundamental differences in process and alignment, which are critical for practical deployment in real-world coordination tasks.
Abstract:We present ComplexityNet, a streamlined language model designed for assessing task complexity. This model predicts the likelihood of accurate output by various language models, each with different capabilities. Our initial application of ComplexityNet involves the Mostly Basic Python Problems (MBPP) dataset. We pioneered the creation of the first set of labels to define task complexity. ComplexityNet achieved a notable 79% accuracy in determining task complexity, a significant improvement over the 34% accuracy of the original, non fine-tuned model. Furthermore, ComplexityNet effectively reduces computational resource usage by 90% compared to using the highest complexity model, while maintaining a high code generation accuracy of 86.7%. This study demonstrates that fine-tuning smaller models to categorize tasks based on their complexity can lead to a more balanced trade-off between accuracy and efficiency in the use of Large Language Models. Our findings suggest a promising direction for optimizing LLM applications, especially in resource-constrained environments.