Abstract:Carbon nanotubes (CNTs) are critical building blocks in nanotechnology, yet the characterization of their dynamic growth is limited by the experimental challenges in nanoscale motion measurement using scanning electron microscopy (SEM) imaging. Existing ex situ methods offer only static analysis, while in situ techniques often require manual initialization and lack continuous per-particle trajectory decomposition. We present Visual Feature Tracking (VFTrack) an in-situ real-time particle tracking framework that automatically detects and tracks individual CNT particles in SEM image sequences. VFTrack integrates handcrafted or deep feature detectors and matchers within a particle tracking framework to enable kinematic analysis of CNT micropillar growth. A systematic using 13,540 manually annotated trajectories identifies the ALIKED detector with LightGlue matcher as an optimal combination (F1-score of 0.78, $\alpha$-score of 0.89). VFTrack motion vectors decomposed into axial growth, lateral drift, and oscillations, facilitate the calculation of heterogeneous regional growth rates and the reconstruction of evolving CNT pillar morphologies. This work enables advancement in automated nano-material characterization, bridging the gap between physics-based models and experimental observation to enable real-time optimization of CNT synthesis.
Abstract:We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of multi-layer synthetic (MLS) or quasi-2.5D images which are generated by blending 2D synthetic images. The MLS images more closely resemble 3D synthetic and real scanning electron microscopy (SEM) images of CNTs but without the computational cost of performing expensive 3D simulations or experiments. Mechanical properties such as stiffness and buckling load for the MLS images are estimated using a physics-based model. The proposed deep learning architecture, CNTNeXt, builds upon our previous CNTNet neural network, using a ResNeXt feature representation followed by random forest regression estimator. Our machine learning approach for predicting CNT physical properties by utilizing a blended set of synthetic images is expected to outperform single synthetic image-based learning when it comes to predicting mechanical properties of real scanning electron microscopy images. This has the potential to accelerate understanding and control of CNT forest self-assembly for diverse applications.