Abstract:We introduce AgenticSimLaw, a role-structured, multi-agent debate framework that provides transparent and controllable test-time reasoning for high-stakes tabular decision-making tasks. Unlike black-box approaches, our courtroom-style orchestration explicitly defines agent roles (prosecutor, defense, judge), interaction protocols (7-turn structured debate), and private reasoning strategies, creating a fully auditable decision-making process. We benchmark this framework on young adult recidivism prediction using the NLSY97 dataset, comparing it against traditional chain-of-thought (CoT) prompting across almost 90 unique combinations of models and strategies. Our results demonstrate that structured multi-agent debate provides more stable and generalizable performance compared to single-agent reasoning, with stronger correlation between accuracy and F1-score metrics. Beyond performance improvements, AgenticSimLaw offers fine-grained control over reasoning steps, generates complete interaction transcripts for explainability, and enables systematic profiling of agent behaviors. While we instantiate this framework in the criminal justice domain to stress-test reasoning under ethical complexity, the approach generalizes to any deliberative, high-stakes decision task requiring transparency and human oversight. This work addresses key LLM-based multi-agent system challenges: organization through structured roles, observability through logged interactions, and responsibility through explicit non-deployment constraints for sensitive domains. Data, results, and code will be available on github.com under the MIT license.
Abstract:Modernist novels are thought to break with traditional plot structure. In this paper, we test this theory by applying Sentiment Analysis to one of the most famous modernist novels, To the Lighthouse by Virginia Woolf. We first assess Sentiment Analysis in light of the critique that it cannot adequately account for literary language: we use a unique statistical comparison to demonstrate that even simple lexical approaches to Sentiment Analysis are surprisingly effective. We then use the Syuzhet.R package to explore similarities and differences across modeling methods. This comparative approach, when paired with literary close reading, can offer interpretive clues. To our knowledge, we are the first to undertake a hybrid model that fully leverages the strengths of both computational analysis and close reading. This hybrid model raises new questions for the literary critic, such as how to interpret relative versus absolute emotional valence and how to take into account subjective identification. Our finding is that while To the Lighthouse does not replicate a plot centered around a traditional hero, it does reveal an underlying emotional structure distributed between characters - what we term a distributed heroine model. This finding is innovative in the field of modernist and narrative studies and demonstrates that a hybrid method can yield significant discoveries.