Abstract:Machine learning and computer vision methods have a major impact on the study of natural animal behavior, as they enable the (semi-)automatic analysis of vast amounts of video data. Mice are the standard mammalian model system in most research fields, but the datasets available today to refine such methods focus either on simple or social behaviors. In this work, we present a video dataset of individual mice solving complex mechanical puzzles, so-called lockboxes. The more than 110 hours of total playtime show their behavior recorded from three different perspectives. As a benchmark for frame-level action classification methods, we provide human-annotated labels for all videos of two different mice, that equal 13% of our dataset. Our keypoint (pose) tracking-based action classification framework illustrates the challenges of automated labeling of fine-grained behaviors, such as the manipulation of objects. We hope that our work will help accelerate the advancement of automated action and behavior classification in the computational neuroscience community. Our dataset is publicly available at https://doi.org/10.14279/depositonce-23850
Abstract:Tracking mouse body parts in video is often incomplete due to occlusions such that - e.g. - subsequent action and behavior analysis is impeded. In this conceptual work, videos from several perspectives are integrated via global exterior camera orientation; body part positions are estimated by 3D triangulation and bundle adjustment. Consistency of overall 3D track reconstruction is achieved by introduction of a 3D mouse model, deep-learned body part movements, and global motion-track smoothness constraint. The resulting 3D body and body part track estimates are substantially more complete than the original single-frame-based body part detection, therefore, allowing improved animal behavior analysis.