Abstract:Growing reliance on LLMs for psychiatric self-assessment raises questions about their ability to interpret qualitative patient narratives. We present the first direct comparison between state-of-the-art LLMs and mental health professionals in diagnosing Borderline (BPD) and Narcissistic (NPD) Personality Disorders utilizing Polish-language first-person autobiographical accounts. We show that the top-performing Gemini Pro models surpassed human professionals in overall diagnostic accuracy by 21.91 percentage points (65.48% vs. 43.57%). While both models and human experts excelled at identifying BPD (F1 = 83.4 & F1 = 80.0, respectively), models severely underdiagnosed NPD (F1 = 6.7 vs. 50.0), showing a reluctance toward the value-laden term "narcissism." Qualitatively, models provided confident, elaborate justifications focused on patterns and formal categories, while human experts remained concise and cautious, emphasizing the patient's sense of self and temporal experience. Our findings demonstrate that while LLMs are highly competent at interpreting complex first-person clinical data, they remain subject to critical reliability and bias issues.
Abstract:This paper discusses two approaches to the diachronic normalization of Polish texts: a rule-based solution that relies on a set of handcrafted patterns, and a neural normalization model based on the text-to-text transfer transformer architecture. The training and evaluation data prepared for the task are discussed in detail, along with experiments conducted to compare the proposed normalization solutions. A quantitative and qualitative analysis is made. It is shown that at the current stage of inquiry into the problem, the rule-based solution outperforms the neural one on 3 out of 4 variants of the prepared dataset, although in practice both approaches have distinct advantages and disadvantages.