Abstract:This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Abstract:Query-focused tabular summarization is an emerging task in table-to-text generation that synthesizes a summary response from tabular data based on user queries. Traditional transformer-based approaches face challenges due to token limitations and the complexity of reasoning over large tables. To address these challenges, we introduce DETQUS (Decomposition-Enhanced Transformers for QUery-focused Summarization), a system designed to improve summarization accuracy by leveraging tabular decomposition alongside a fine-tuned encoder-decoder model. DETQUS employs a large language model to selectively reduce table size, retaining only query-relevant columns while preserving essential information. This strategy enables more efficient processing of large tables and enhances summary quality. Our approach, equipped with table-based QA model Omnitab, achieves a ROUGE-L score of 0.4437, outperforming the previous state-of-the-art REFACTOR model (ROUGE-L: 0.422). These results highlight DETQUS as a scalable and effective solution for query-focused tabular summarization, offering a structured alternative to more complex architectures.