Abstract:Sampling from heavy-tailed and multimodal distributions is challenging when neither the target density nor the proposal density can be evaluated, as in $α$-stable Lévy-driven fractional Langevin algorithms. While the target distribution can be estimated from data via score-based or energy-based models, the $α$-stable proposal density and its score are generally unavailable, rendering classical density-based Metropolis--Hastings (MH) corrections impractical. Consequently, existing fractional Langevin methods operate in an unadjusted regime and can exhibit substantial finite-time errors and poor empirical control of tail behavior. We introduce the Metropolis-Adjusted Fractional Langevin Algorithm (MAFLA), an MH-inspired, fully score-based correction mechanism. MAFLA employs designed proxies for fractional proposal score gradients under isotropic symmetric $α$-stable noise and learns an acceptance function via Score Balance Matching. We empirically illustrate the strong performance of MAFLA on a series of tasks including combinatorial optimization problems where the method significantly improves finite time sampling accuracy over unadjusted fractional Langevin dynamics.
Abstract:Estimating the unknown reward functions driving agents' behaviors is of central interest in inverse reinforcement learning and game theory. To tackle this problem, we develop a unified framework for reward function recovery in two-player zero-sum matrix games and Markov games with entropy regularization, where we aim to reconstruct the underlying reward functions given observed players' strategies and actions. This task is challenging due to the inherent ambiguity of inverse problems, the non-uniqueness of feasible rewards, and limited observational data coverage. To address these challenges, we establish the reward function's identifiability using the quantal response equilibrium (QRE) under linear assumptions. Building upon this theoretical foundation, we propose a novel algorithm to learn reward functions from observed actions. Our algorithm works in both static and dynamic settings and is adaptable to incorporate different methods, such as Maximum Likelihood Estimation (MLE). We provide strong theoretical guarantees for the reliability and sample efficiency of our algorithm. Further, we conduct extensive numerical studies to demonstrate the practical effectiveness of the proposed framework, offering new insights into decision-making in competitive environments.