Abstract:Zero-shot video moment retrieval (ZVMR) is the task of localizing a temporal moment within an untrimmed video using a natural language query without relying on task-specific training data. The primary challenge in this setting lies in the mismatch in semantic granularity between textual queries and visual content. Previous studies in ZVMR have attempted to achieve alignment by leveraging high-quality pre-trained knowledge that represents video and language in a joint space. However, these approaches failed to balance the semantic granularity between the pre-trained knowledge provided by each modality for a given scene. As a result, despite the high quality of each modality's representations, the mismatch in granularity led to inaccurate retrieval. In this paper, we propose a training-free framework, called Granularity-Aware Alignment (GranAlign), that bridges this gap between coarse and fine semantic representations. Our approach introduces two complementary techniques: granularity-based query rewriting to generate varied semantic granularities, and query-aware caption generation to embed query intent into video content. By pairing multi-level queries with both query-agnostic and query-aware captions, we effectively resolve semantic mismatches. As a result, our method sets a new state-of-the-art across all three major benchmarks (QVHighlights, Charades-STA, ActivityNet-Captions), with a notable 3.23% mAP@avg improvement on the challenging QVHighlights dataset.




Abstract:Zero-shot Long Video Moment Retrieval (ZLVMR) is the task of identifying temporal segments in hour-long videos using a natural language query without task-specific training. The core technical challenge of LVMR stems from the computational infeasibility of processing entire lengthy videos in a single pass. This limitation has established a 'Search-then-Refine' approach, where candidates are rapidly narrowed down, and only those portions are analyzed, as the dominant paradigm for LVMR. However, existing approaches to this paradigm face severe limitations. Conventional supervised learning suffers from limited scalability and poor generalization, despite substantial resource consumption. Yet, existing zero-shot methods also fail, facing a dual challenge: (1) their heuristic strategies cause a 'search' phase candidate explosion, and (2) the 'refine' phase, which is vulnerable to semantic discrepancy, requires high-cost VLMs for verification, incurring significant computational overhead. We propose \textbf{P}oint-\textbf{to}-\textbf{S}pan (P2S), a novel training-free framework to overcome this challenge of inefficient 'search' and costly 'refine' phases. P2S overcomes these challenges with two key innovations: an 'Adaptive Span Generator' to prevent the search phase candidate explosion, and 'Query Decomposition' to refine candidates without relying on high-cost VLM verification. To our knowledge, P2S is the first zero-shot framework capable of temporal grounding in hour-long videos, outperforming supervised state-of-the-art methods by a significant margin (e.g., +3.7\% on R5@0.1 on MAD).