Abstract:The manifold hypothesis says that natural high-dimensional data is actually supported on or around a low-dimensional manifold. Recent success of statistical and learning-based methods empirically supports this hypothesis, due to outperforming classical statistical intuition in very high dimensions. A natural step for analysis is thus to assume the manifold hypothesis and derive bounds that are independent of any embedding space. Theoretical implications in this direction have recently been explored in terms of generalization of ReLU networks and convergence of Langevin methods. We complement existing results by providing theoretical statistical complexity results, which directly relates to generalization properties. In particular, we demonstrate that the statistical complexity required to approximate a class of bounded Sobolev functions on a compact manifold is bounded from below, and moreover that this bound is dependent only on the intrinsic properties of the manifold. These provide complementary bounds for existing approximation results for ReLU networks on manifolds, which give upper bounds on generalization capacity.
Abstract:Stochastic optimisation algorithms are the de facto standard for machine learning with large amounts of data. Handling only a subset of available data in each optimisation step dramatically reduces the per-iteration computational costs, while still ensuring significant progress towards the solution. Driven by the need to solve large-scale optimisation problems as efficiently as possible, the last decade has witnessed an explosion of research in this area. Leveraging the parallels between machine learning and inverse problems has allowed harnessing the power of this research wave for solving inverse problems. In this survey, we provide a comprehensive account of the state-of-the-art in stochastic optimisation from the viewpoint of inverse problems. We present algorithms with diverse modalities of problem randomisation and discuss the roles of variance reduction, acceleration, higher-order methods, and other algorithmic modifications, and compare theoretical results with practical behaviour. We focus on the potential and the challenges for stochastic optimisation that are unique to inverse imaging problems and are not commonly encountered in machine learning. We conclude the survey with illustrative examples from imaging problems to examine the advantages and disadvantages that this new generation of algorithms bring to the field of inverse problems.
Abstract:Unsupervised learning is a training approach in the situation where ground truth data is unavailable, such as inverse imaging problems. We present an unsupervised Bayesian training approach to learning convex neural network regularizers using a fixed noisy dataset, based on a dual Markov chain estimation method. Compared to classical supervised adversarial regularization methods, where there is access to both clean images as well as unlimited to noisy copies, we demonstrate close performance on natural image Gaussian deconvolution and Poisson denoising tasks.
Abstract:Unsupervised deep learning approaches have recently become one of the crucial research areas in imaging owing to their ability to learn expressive and powerful reconstruction operators even when paired high-quality training data is scarcely available. In this chapter, we review theoretically principled unsupervised learning schemes for solving imaging inverse problems, with a particular focus on methods rooted in optimal transport and convex analysis. We begin by reviewing the optimal transport-based unsupervised approaches such as the cycle-consistency-based models and learned adversarial regularization methods, which have clear probabilistic interpretations. Subsequently, we give an overview of a recent line of works on provably convergent learned optimization algorithms applied to accelerate the solution of imaging inverse problems, alongside their dedicated unsupervised training schemes. We also survey a number of provably convergent plug-and-play algorithms (based on gradient-step deep denoisers), which are among the most important and widely applied unsupervised approaches for imaging problems. At the end of this survey, we provide an overview of a few related unsupervised learning frameworks that complement our focused schemes. Together with a detailed survey, we provide an overview of the key mathematical results that underlie the methods reviewed in the chapter to keep our discussion self-contained.
Abstract:Combining the strengths of model-based iterative algorithms and data-driven deep learning solutions, deep unrolling networks (DuNets) have become a popular tool to solve inverse imaging problems. While DuNets have been successfully applied to many linear inverse problems, nonlinear problems tend to impair the performance of the method. Inspired by momentum acceleration techniques that are often used in optimization algorithms, we propose a recurrent momentum acceleration (RMA) framework that uses a long short-term memory recurrent neural network (LSTM-RNN) to simulate the momentum acceleration process. The RMA module leverages the ability of the LSTM-RNN to learn and retain knowledge from the previous gradients. We apply RMA to two popular DuNets -- the learned proximal gradient descent (LPGD) and the learned primal-dual (LPD) methods, resulting in LPGD-RMA and LPD-RMA respectively. We provide experimental results on two nonlinear inverse problems: a nonlinear deconvolution problem, and an electrical impedance tomography problem with limited boundary measurements. In the first experiment we have observed that the improvement due to RMA largely increases with respect to the nonlinearity of the problem. The results of the second example further demonstrate that the RMA schemes can significantly improve the performance of DuNets in strongly ill-posed problems.
Abstract:Bayesian methods for solving inverse problems are a powerful alternative to classical methods since the Bayesian approach gives a probabilistic description of the problems and offers the ability to quantify the uncertainty in the solution. Meanwhile, solving inverse problems by data-driven techniques also proves to be successful, due to the increasing representation ability of data-based models. In this work, we try to incorporate the data-based models into a class of Langevin-based sampling algorithms in Bayesian inference. Loosely speaking, we introduce NF-ULA (Unadjusted Langevin algorithms by Normalizing Flows), which involves learning a normalizing flow as the prior. In particular, our algorithm only requires a pre-trained normalizing flow, which is independent of the considered inverse problem and the forward operator. We perform theoretical analysis by investigating the well-posedness of the Bayesian solution and the non-asymptotic convergence of the NF-ULA algorithm. The efficacy of the proposed NF-ULA algorithm is demonstrated in various imaging problems, including image deblurring, image inpainting, and limited-angle X-ray computed tomography (CT) reconstruction.
Abstract:Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM. Existing provable PnP methods impose heavy restrictions on the denoiser or fidelity function, such as nonexpansiveness or strict convexity. In this work, we propose a provable PnP method that imposes relatively light conditions based on proximal denoisers, and introduce a quasi-Newton step to greatly accelerate convergence. By specially parameterizing the deep denoiser as a gradient step, we further characterize the fixed-points of the quasi-Newton PnP algorithm.
Abstract:In this work we propose a new paradigm for designing efficient deep unrolling networks using dimensionality reduction schemes, including minibatch gradient approximation and operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially X-ray CT and MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by unrolling the stochastic gradient descent (SGD), inspired by the success of stochastic first-order optimization. In this work, we explore further this direction and propose first a more expressive and practical stochastic primal-dual unrolling, based on the state-of-the-art Learned Primal-Dual (LPD) network, and also a further acceleration upon stochastic primal-dual unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our accelerated unrolling schemes.
Abstract:In this work we propose a stochastic primal-dual preconditioned three-operator splitting algorithm for solving a class of convex three-composite optimization problems. Our proposed scheme is a direct three-operator splitting extension of the SPDHG algorithm [Chambolle et al. 2018]. We provide theoretical convergence analysis showing ergodic O(1/K) convergence rate, and demonstrate the effectiveness of our approach in imaging inverse problems.
Abstract:In this work we propose a new paradigm for designing efficient deep unrolling networks using operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially the 3D cone-beam X-ray CT and 4D MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by stochastic unrolling with subsets of operators, inspired by the success of stochastic first-order optimization. In this work, we propose a further acceleration upon stochastic unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our sketched unrolling schemes.