Abstract:Personalized Bayesian federated learning (PBFL) handles non-i.i.d. client data and quantifies uncertainty by combining personalization with Bayesian inference. However, existing PBFL methods face two limitations: restrictive parametric assumptions in client posterior inference and naive parameter averaging for server aggregation. To overcome these issues, we propose FedWBA, a novel PBFL method that enhances both local inference and global aggregation. At the client level, we use particle-based variational inference for nonparametric posterior representation. At the server level, we introduce particle-based Wasserstein barycenter aggregation, offering a more geometrically meaningful approach. Theoretically, we provide local and global convergence guarantees for FedWBA. Locally, we prove a KL divergence decrease lower bound per iteration for variational inference convergence. Globally, we show that the Wasserstein barycenter converges to the true parameter as the client data size increases. Empirically, experiments show that FedWBA outperforms baselines in prediction accuracy, uncertainty calibration, and convergence rate, with ablation studies confirming its robustness.
Abstract:This work addresses a key limitation in current federated learning approaches, which predominantly focus on homogeneous tasks, neglecting the task diversity on local devices. We propose a principled integration of multi-task learning using multi-output Gaussian processes (MOGP) at the local level and federated learning at the global level. MOGP handles correlated classification and regression tasks, offering a Bayesian non-parametric approach that naturally quantifies uncertainty. The central server aggregates the posteriors from local devices, updating a global MOGP prior redistributed for training local models until convergence. Challenges in performing posterior inference on local devices are addressed through the P\'{o}lya-Gamma augmentation technique and mean-field variational inference, enhancing computational efficiency and convergence rate. Experimental results on both synthetic and real data demonstrate superior predictive performance, OOD detection, uncertainty calibration and convergence rate, highlighting the method's potential in diverse applications. Our code is publicly available at https://github.com/JunliangLv/task_diversity_BFL.