



Abstract:Single-channel 3D reconstruction is widely used in fields such as robotics and medical imaging. While this line of work excels at reconstructing 3D geometry, the outputs are not colored 3D models, thus 3D colorization is required for visualization. Recent 3D colorization studies address this problem by distilling 2D image colorization models. However, these approaches suffer from an inherent inconsistency of 2D image models. This results in colors being averaged during training, leading to monotonous and oversimplified results, particularly in complex 360° scenes. In contrast, we aim to preserve color diversity by generating a new set of consistently colorized training views, thereby bypassing the averaging process. Nevertheless, eliminating the averaging process introduces a new challenge: ensuring strict multi-view consistency across these colorized views. To achieve this, we propose LoGoColor, a pipeline designed to preserve color diversity by eliminating this guidance-averaging process with a `Local-Global' approach: we partition the scene into subscenes and explicitly tackle both inter-subscene and intra-subscene consistency using a fine-tuned multi-view diffusion model. We demonstrate that our method achieves quantitatively and qualitatively more consistent and plausible 3D colorization on complex 360° scenes than existing methods, and validate its superior color diversity using a novel Color Diversity Index.
Abstract:Large language models (LLMs) have emerged due to their capability to generate high-quality content across diverse contexts. To reduce their explosively increasing demands for computing resources, a mixture of experts (MoE) has emerged. The MoE layer enables exploiting a huge number of parameters with less computation. Applying state-of-the-art continuous batching increases throughput; however, it leads to frequent DRAM access in the MoE and attention layers. We observe that conventional computing devices have limitations when processing the MoE and attention layers, which dominate the total execution time and exhibit low arithmetic intensity (Op/B). Processing MoE layers only with devices targeting low-Op/B such as processing-in-memory (PIM) architectures is challenging due to the fluctuating Op/B in the MoE layer caused by continuous batching. To address these challenges, we propose Duplex, which comprises xPU tailored for high-Op/B and Logic-PIM to effectively perform low-Op/B operation within a single device. Duplex selects the most suitable processor based on the Op/B of each layer within LLMs. As the Op/B of the MoE layer is at least 1 and that of the attention layer has a value of 4-8 for grouped query attention, prior PIM architectures are not efficient, which place processing units inside DRAM dies and only target extremely low-Op/B (under one) operations. Based on recent trends, Logic-PIM adds more through-silicon vias (TSVs) to enable high-bandwidth communication between the DRAM die and the logic die and place powerful processing units on the logic die, which is best suited for handling low-Op/B operations ranging from few to a few dozens. To maximally utilize the xPU and Logic-PIM, we propose expert and attention co-processing.