



Abstract:Object detection plays a crucial role in the field of computer vision by autonomously identifying and locating objects of interest. The You Only Look Once (YOLO) model is an effective single-shot detector. However, YOLO faces challenges in cluttered or partially occluded scenes and can struggle with small, low-contrast objects. We propose a new method that integrates spatial transformer networks (STNs) into YOLO to improve performance. The proposed STN-YOLO aims to enhance the model's effectiveness by focusing on important areas of the image and improving the spatial invariance of the model before the detection process. Our proposed method improved object detection performance both qualitatively and quantitatively. We explore the impact of different localization networks within the STN module as well as the robustness of the model across different spatial transformations. We apply the STN-YOLO on benchmark datasets for Agricultural object detection as well as a new dataset from a state-of-the-art plant phenotyping greenhouse facility. Our code and dataset are publicly available.




Abstract:Pooling layers (e.g., max and average) may overlook important information encoded in the spatial arrangement of pixel intensity and/or feature values. We propose a novel lacunarity pooling layer that aims to capture the spatial heterogeneity of the feature maps by evaluating the variability within local windows. The layer operates at multiple scales, allowing the network to adaptively learn hierarchical features. The lacunarity pooling layer can be seamlessly integrated into any artificial neural network architecture. Experimental results demonstrate the layer's effectiveness in capturing intricate spatial patterns, leading to improved feature extraction capabilities. The proposed approach holds promise in various domains, especially in agricultural image analysis tasks. This work contributes to the evolving landscape of artificial neural network architectures by introducing a novel pooling layer that enriches the representation of spatial features. Our code is publicly available.
Abstract:In the computer vision literature, many effective histogram-based features have been developed. These engineered features include local binary patterns and edge histogram descriptors among others and they have been shown to be informative features for a variety of computer vision tasks. In this paper, we explore whether these features can be learned through histogram layers embedded in a neural network and, therefore, be leveraged within deep learning frameworks. By using histogram features, local statistics of the feature maps from the convolution neural networks can be used to better represent the data. We present neural versions of local binary pattern and edge histogram descriptors that jointly improve the feature representation and perform image classification. Experiments are presented on benchmark and real-world datasets.
Abstract:Underwater acoustic target detection in remote marine sensing operations is challenging due to complex sound wave propagation. Despite the availability of reliable sonar systems, target recognition remains a difficult problem. Various methods address improved target recognition. However, most struggle to disentangle the high-dimensional, non-linear patterns in the observed target recordings. In this work, a novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification. The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition. The code for this work is publicly available.
Abstract:We present a comprehensive analysis of quantitatively evaluating explainable artificial intelligence (XAI) techniques for remote sensing image classification. Our approach leverages state-of-the-art machine learning approaches to perform remote sensing image classification across multiple modalities. We investigate the results of the models qualitatively through XAI methods. Additionally, we compare the XAI methods quantitatively through various categories of desired properties. Through our analysis, we offer insights and recommendations for selecting the most appropriate XAI method(s) to gain a deeper understanding of the models' decision-making processes. The code for this work is publicly available.




Abstract:Synthetic aperture sonar (SAS) imagery is crucial for several applications, including target recognition and environmental segmentation. Deep learning models have led to much success in SAS analysis; however, the features extracted by these approaches may not be suitable for capturing certain textural information. To address this problem, we present a novel application of histogram layers on SAS imagery. The addition of histogram layer(s) within the deep learning models improved performance by incorporating statistical texture information on both synthetic and real-world datasets.




Abstract:In this work, we propose a new loss to improve feature discriminability and classification performance. Motivated by the adaptive cosine/coherence estimator (ACE), our proposed method incorporates angular information that is inherently learned by artificial neural networks. Our learnable ACE (LACE) transforms the data into a new "whitened" space that improves the inter-class separability and intra-class compactness. We compare our LACE to alternative state-of-the art softmax-based and feature regularization approaches. Our results show that the proposed method can serve as a viable alternative to cross entropy and angular softmax approaches. Our code is publicly available: https://github.com/GatorSense/LACE.
Abstract:The Possibilistic Fuzzy Local Information C-Means (PFLICM) method is presented as a technique to segment side-look synthetic aperture sonar (SAS) imagery into distinct regions of the sea-floor. In this work, we investigate and present the results of an automated feature selection approach for SAS image segmentation. The chosen features and resulting segmentation from the image will be assessed based on a select quantitative clustering validity criterion and the subset of the features that reach a desired threshold will be used for the segmentation process.




Abstract:In this work, we present an in-depth and systematic analysis using tools such as local interpretable model-agnostic explanations (LIME) (arXiv:1602.04938) and divergence measures to analyze what changes lead to improvement in performance in fine tuned models for synthetic aperture sonar (SAS) data. We examine the sensitivity to factors in the fine tuning process such as class imbalance. Our findings show not only an improvement in seafloor texture classification, but also provide greater insight into what features play critical roles in improving performance as well as a knowledge of the importance of balanced data for fine tuning deep learning models for seafloor classification in SAS imagery.




Abstract:In this paper, we investigate performing joint dimensionality reduction and classification using a novel histogram neural network. Motivated by a popular dimensionality reduction approach, t-Distributed Stochastic Neighbor Embedding (t-SNE), our proposed method incorporates a classification loss computed on samples in a low-dimensional embedding space. We compare the learned sample embeddings against coordinates found by t-SNE in terms of classification accuracy and qualitative assessment. We also explore use of various divergence measures in the t-SNE objective. The proposed method has several advantages such as readily embedding out-of-sample points and reducing feature dimensionality while retaining class discriminability. Our results show that the proposed approach maintains and/or improves classification performance and reveals characteristics of features produced by neural networks that may be helpful for other applications.