Abstract:Due to divergence instability, the accuracy of low-order conforming finite element methods for nearly incompressible homogeneous elasticity equations deteriorates as the Lam\'e coefficient $\lambda\to\infty$, or equivalently as the Poisson ratio $\nu\to1/2$. This phenomenon, known as locking or non-robustness, remains not fully understood despite extensive investigation. In this paper, we propose a robust method based on a fundamentally different, machine-learning-driven approach. Leveraging recently developed Physics-Informed Neural Networks (PINNs), we address the numerical solution of linear elasticity equations governing nearly incompressible materials. The core idea of our method is to appropriately decompose the given equations to alleviate the extreme imbalance in the coefficients, while simultaneously solving both the forward and inverse problems to recover the solutions of the decomposed systems as well as the associated external conditions. Through various numerical experiments, including constant, variable and parametric Lam\'e coefficients, we illustrate the efficiency of the proposed methodology.
Abstract:The transparent cornea is the window of the eye, facilitating the entry of light rays and controlling focusing the movement of the light within the eye. The cornea is critical, contributing to 75% of the refractive power of the eye. Keratoconus is a progressive and multifactorial corneal degenerative disease affecting 1 in 2000 individuals worldwide. Currently, there is no cure for keratoconus other than corneal transplantation for advanced stage keratoconus or corneal cross-linking, which can only halt KC progression. The ability to accurately identify subtle KC or KC progression is of vital clinical significance. To date, there has been little consensus on a useful model to classify KC patients, which therefore inhibits the ability to predict disease progression accurately. In this paper, we utilised machine learning to analyse data from 124 KC patients, including topographical and clinical variables. Both supervised multilayer perceptron and unsupervised variational autoencoder models were used to classify KC patients with reference to the existing Amsler-Krumeich (A-K) classification system. Both methods result in high accuracy, with the unsupervised method showing better performance. The result showed that the unsupervised method with a selection of 29 variables could be a powerful tool to provide an automatic classification tool for clinicians. These outcomes provide a platform for additional analysis for the progression and treatment of keratoconus.