Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Jon McAuliffe

Rao-Blackwellized Stochastic Gradients for Discrete Distributions

Oct 10, 2018
Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael I. Jordan, Jon McAuliffe

* 7 pages, 6 figures; submitted to AISTATS 2019 

  Access Paper or Ask Questions

Fast Black-box Variational Inference through Stochastic Trust-Region Optimization

Nov 05, 2017
Jeffrey Regier, Michael I. Jordan, Jon McAuliffe

* NIPS 2017 camera-ready 

  Access Paper or Ask Questions

Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference

Nov 10, 2016
Jeffrey Regier, Kiran Pamnany, Ryan Giordano, Rollin Thomas, David Schlegel, Jon McAuliffe, Prabhat

* submitting to IPDPS'17 

  Access Paper or Ask Questions

Celeste: Variational inference for a generative model of astronomical images

Jun 03, 2015
Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matt Hoffman, Dustin Lang, David Schlegel, Prabhat

* in the Proceedings of the 32nd International Conference on Machine Learning (2015) 

  Access Paper or Ask Questions

Variational inference for large-scale models of discrete choice

Jan 15, 2008
Michael Braun, Jon McAuliffe

* Journal of the American Statistical Association (2010) 105(489): 324-334 
* 29 pages, 2 tables, 2 figures 

  Access Paper or Ask Questions