Abstract:Multipactor is a nonlinear electron avalanche phenomenon that can severely impair the performance of high-power radio frequency (RF) devices and accelerator systems. Accurate prediction of multipactor susceptibility across different materials and operational regimes remains a critical yet computationally intensive challenge in accelerator component design and RF engineering. This study presents the first application of supervised machine learning (ML) for predicting multipactor susceptibility in two-surface planar geometries. A simulation-derived dataset spanning six distinct secondary electron yield (SEY) material profiles is used to train regression models - including Random Forest (RF), Extra Trees (ET), Extreme Gradient Boosting (XGBoost), and funnel-structured Multilayer Perceptrons (MLPs) - to predict the time-averaged electron growth rate, ${\delta}_{avg}$. Performance is evaluated using Intersection over Union (IoU), Structural Similarity Index (SSIM), and Pearson correlation coefficient. Tree-based models consistently outperform MLPs in generalizing across disjoint material domains. MLPs trained using a scalarized objective function that combines IoU and SSIM during Bayesian hyperparameter optimization with 5-fold cross-validation outperform those trained with single-objective loss functions. Principal Component Analysis reveals that performance degradation for certain materials stems from disjoint feature-space distributions, underscoring the need for broader dataset coverage. This study demonstrates both the promise and limitations of ML-based multipactor prediction and lays the groundwork for accelerated, data-driven modeling in advanced RF and accelerator system design.