Abstract:Multipactor is a nonlinear electron avalanche phenomenon that can severely impair the performance of high-power radio frequency (RF) devices and accelerator systems. Accurate prediction of multipactor susceptibility across different materials and operational regimes remains a critical yet computationally intensive challenge in accelerator component design and RF engineering. This study presents the first application of supervised machine learning (ML) for predicting multipactor susceptibility in two-surface planar geometries. A simulation-derived dataset spanning six distinct secondary electron yield (SEY) material profiles is used to train regression models - including Random Forest (RF), Extra Trees (ET), Extreme Gradient Boosting (XGBoost), and funnel-structured Multilayer Perceptrons (MLPs) - to predict the time-averaged electron growth rate, ${\delta}_{avg}$. Performance is evaluated using Intersection over Union (IoU), Structural Similarity Index (SSIM), and Pearson correlation coefficient. Tree-based models consistently outperform MLPs in generalizing across disjoint material domains. MLPs trained using a scalarized objective function that combines IoU and SSIM during Bayesian hyperparameter optimization with 5-fold cross-validation outperform those trained with single-objective loss functions. Principal Component Analysis reveals that performance degradation for certain materials stems from disjoint feature-space distributions, underscoring the need for broader dataset coverage. This study demonstrates both the promise and limitations of ML-based multipactor prediction and lays the groundwork for accelerated, data-driven modeling in advanced RF and accelerator system design.
Abstract:Accurate load forecasting is crucial for energy management, infrastructure planning, and demand-supply balancing. Smart meter data availability has led to the demand for sensor-based load forecasting. Conventional ML allows training a single global model using data from multiple smart meters requiring data transfer to a central server, raising concerns for network requirements, privacy, and security. We propose a split learning-based framework for load forecasting to alleviate this issue. We split a deep neural network model into two parts, one for each Grid Station (GS) responsible for an entire neighbourhood's smart meters and the other for the Service Provider (SP). Instead of sharing their data, client smart meters use their respective GSs' model split for forward pass and only share their activations with the GS. Under this framework, each GS is responsible for training a personalized model split for their respective neighbourhoods, whereas the SP can train a single global or personalized model for each GS. Experiments show that the proposed models match or exceed a centrally trained model's performance and generalize well. Privacy is analyzed by assessing information leakage between data and shared activations of the GS model split. Additionally, differential privacy enhances local data privacy while examining its impact on performance. A transformer model is used as our base learner.