UC Berkeley
Abstract:Area under the receiver operating characteristics curve (AUC) is an important metric for a wide range of signal processing and machine learning problems, and scalable methods for optimizing AUC have recently been proposed. However, handling very large datasets remains an open challenge for this problem. This paper proposes a novel approach to AUC maximization, based on sampling mini-batches of positive/negative instance pairs and computing U-statistics to approximate a global risk minimization problem. The resulting algorithm is simple, fast, and learning-rate free. We show that the number of samples required for good performance is independent of the number of pairs available, which is a quadratic function of the positive and negative instances. Extensive experiments show the practical utility of the proposed method.
Abstract:Existing deep convolutional neural networks have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential application, for example in mobile devices. In this paper, we propose a lightweight pyramid of networks (LPNet) for single image deraining. Instead of designing a complex network structures, we use domain-specific knowledge to simplify the learning process. Specifically, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.
Abstract:Recent CNN-based saliency models have achieved great performance on public datasets, however, most of them are sensitive to distortion (e.g., noise, compression). In this paper, an end-to-end generic salient object segmentation model called Metric Expression Network (MEnet) is proposed to overcome this drawback. Within this architecture, we construct a new topological metric space, with the implicit metric being determined by the deep network. In this way, we succeed in grouping all the pixels within the observed image semantically within this latent space into two regions: a salient region and a non-salient region. With this method, all feature extractions are carried out at the pixel level, which makes the output boundaries of salient object fine-grained. Experimental results show that the proposed metric can generate robust salient maps that allow for object segmentation. By testing the method on several public benchmarks, we show that the performance of MEnet has achieved good results. Furthermore, the proposed method outperforms previous CNN-based methods on distorted images.
Abstract:The need for fast acquisition and automatic analysis of MRI data is growing in the age of big data. Although compressed sensing magnetic resonance imaging (CS-MRI) has been studied to accelerate MRI by reducing k-space measurements, in current CS-MRI techniques MRI applications such as segmentation are overlooked when doing image reconstruction. In this paper, we test the utility of CS-MRI methods in automatic segmentation models and propose a unified deep neural network architecture called SegNetMRI which we apply to the combined CS-MRI reconstruction and segmentation problem. SegNetMRI is built upon a MRI reconstruction network with multiple cascaded blocks each containing an encoder-decoder unit and a data fidelity unit, and MRI segmentation networks having the same encoder-decoder structure. The two subnetworks are pre-trained and fine-tuned with shared reconstruction encoders. The outputs are merged into the final segmentation. Our experiments show that SegNetMRI can improve both the reconstruction and segmentation performance when using compressive measurements.
Abstract:In multi-contrast magnetic resonance imaging (MRI), compressed sensing theory can accelerate imaging by sampling fewer measurements within each contrast. The conventional optimization-based models suffer several limitations: strict assumption of shared sparse support, time-consuming optimization and "shallow" models with difficulties in encoding the rich patterns hiding in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of parameters. The feature sharing unit is combined with a data fidelity unit to comprise an inference block. These inference blocks are cascaded with dense connections, which allows for information transmission across different depths of the network efficiently. Our extensive experiments on various multi-contrast MRI datasets show that proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We show the improved reconstruction quality can bring great benefits for the later medical image analysis stage. Furthermore, the robustness of the proposed model to the non-registration environment shows its potential in real MRI applications.
Abstract:Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstruction compared with "shallow" optimization-based methods. However, in the existing deep-based CS-MRI models, the high-level semantic supervision information from massive segmentation-labels in MRI dataset is overlooked. In this paper, we proposed a segmentation-aware deep fusion network called SADFN for compressed sensing MRI. The multilayer feature aggregation (MLFA) method is introduced here to fuse all the features from different layers in the segmentation network. Then, the aggregated feature maps containing semantic information are provided to each layer in the reconstruction network with a feature fusion strategy. This guarantees the reconstruction network is aware of the different regions in the image it reconstructs, simplifying the function mapping. We prove the utility of the cross-layer and cross-task information fusion strategy by comparative study. Extensive experiments on brain segmentation benchmark MRBrainS validated that the proposed SADFN model achieves state-of-the-art accuracy in compressed sensing MRI. This paper provides a novel approach to guide the low-level visual task using the information from mid- or high-level task.
Abstract:Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low-frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of high-frequency details. In this paper, we propose a new framework for CS-MRI inversion in which we decompose the observed k-space data into "subspaces" via sets of filters in a lossless way, and reconstruct the images in these various spaces individually using off-the-shelf algorithms. We then fuse the results to obtain the final reconstruction. In this way we are able to focus reconstruction on frequency information within the entire k-space more equally, preserving both high and low frequency details. We demonstrate that the proposed framework is competitive with state-of-the-art methods in CS-MRI in terms of quantitative performance, and often improves an algorithm's results qualitatively compared with it's direct application to k-space.
Abstract:Compressed sensing for magnetic resonance imaging (CS-MRI) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. The goal is to minimize any structural errors in the reconstruction that could have a negative impact on its diagnostic quality. To this end, we propose a deep error correction network (DECN) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a convolutional neural network (CNN) to map the k-space data in a way that adjusts for the reconstruction error of the template image. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.
Abstract:In this paper the problem of forecasting high dimensional time series is considered. Such time series can be modeled as matrices where each column denotes a measurement. In addition, when missing values are present, low rank matrix factorization approaches are suitable for predicting future values. This paper formally defines and analyzes the forecasting problem in the online setting, i.e. where the data arrives as a stream and only a single pass is allowed. We present and analyze novel matrix factorization techniques which can learn low-dimensional embeddings effectively in an online manner. Based on these embeddings a recursive minimum mean square error estimator is derived, which learns an autoregressive model on them. Experiments with two real datasets with tens of millions of measurements show the benefits of the proposed approach.
Abstract:Variational inference (VI) is widely used as an efficient alternative to Markov chain Monte Carlo. It posits a family of approximating distributions $q$ and finds the closest member to the exact posterior $p$. Closeness is usually measured via a divergence $D(q || p)$ from $q$ to $p$. While successful, this approach also has problems. Notably, it typically leads to underestimation of the posterior variance. In this paper we propose CHIVI, a black-box variational inference algorithm that minimizes $D_{\chi}(p || q)$, the $\chi$-divergence from $p$ to $q$. CHIVI minimizes an upper bound of the model evidence, which we term the $\chi$ upper bound (CUBO). Minimizing the CUBO leads to improved posterior uncertainty, and it can also be used with the classical VI lower bound (ELBO) to provide a sandwich estimate of the model evidence. We study CHIVI on three models: probit regression, Gaussian process classification, and a Cox process model of basketball plays. When compared to expectation propagation and classical VI, CHIVI produces better error rates and more accurate estimates of posterior variance.