Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Adji B. Dieng

Consistency Regularization for Variational Auto-Encoders


May 31, 2021
Samarth Sinha, Adji B. Dieng


  Access Paper or Ask Questions

Deep Probabilistic Graphical Modeling


Apr 25, 2021
Adji B. Dieng

* This thesis was defended in April 2020 and accepted without revision. The author received her PhD in Statistics from Columbia University on May 20, 2020 

  Access Paper or Ask Questions

Prescribed Generative Adversarial Networks


Oct 09, 2019
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei, Michalis K. Titsias

* Code for this paper can be found at https://github.com/adjidieng/PresGANs 

  Access Paper or Ask Questions

The Dynamic Embedded Topic Model


Jul 12, 2019
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei


  Access Paper or Ask Questions

Topic Modeling in Embedding Spaces


Jul 08, 2019
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei

* Code can be found at https://github.com/adjidieng/ETM 

  Access Paper or Ask Questions

Reweighted Expectation Maximization


Jun 13, 2019
Adji B. Dieng, John Paisley

* Code can be found at https://github.com/adjidieng/REM 

  Access Paper or Ask Questions

Noisin: Unbiased Regularization for Recurrent Neural Networks


Jul 13, 2018
Adji B. Dieng, Rajesh Ranganath, Jaan Altosaar, David M. Blei

* In Proceedings of the International Conference on Machine Learning, 2018 

  Access Paper or Ask Questions

Avoiding Latent Variable Collapse With Generative Skip Models


Jul 12, 2018
Adji B. Dieng, Yoon Kim, Alexander M. Rush, David M. Blei

* Presented at Workshop on Theoretical Foundations and Applications of Deep Generative Models, ICML, 2018 

  Access Paper or Ask Questions

Augment and Reduce: Stochastic Inference for Large Categorical Distributions


Jun 07, 2018
Francisco J. R. Ruiz, Michalis K. Titsias, Adji B. Dieng, David M. Blei

* Francisco J. R. Ruiz, Michalis K. Titsias, Adji B. Dieng, and David M. Blei. Augment and Reduce: Stochastic Inference for Large Categorical Distributions. International Conference on Machine Learning. Stockholm (Sweden), July 2018 
* 11 pages, 2 figures 

  Access Paper or Ask Questions

Variational Inference via $Ο‡$-Upper Bound Minimization


Nov 12, 2017
Adji B. Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, David M. Blei

* Neural Information Processing Systems, 2017 

  Access Paper or Ask Questions

TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency


Feb 27, 2017
Adji B. Dieng, Chong Wang, Jianfeng Gao, John Paisley

* International Conference on Learning Representations 

  Access Paper or Ask Questions

Edward: A library for probabilistic modeling, inference, and criticism


Feb 01, 2017
Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, David M. Blei


  Access Paper or Ask Questions