Abstract:This work presents a dual-agent Large Language Model (LLM)-based reasoning method for mechanism synthesis, capable of reasoning at both linguistic and symbolic levels to generate geometrical and dynamic outcomes. The model consists of a composition of well-defined functions that, starting from a natural language specification, references abstract properties through supporting equations, generates and parametrizes simulation code, and elicits feedback anchor points using symbolic regression and distance functions. This process closes an actionable refinement loop at the linguistic and symbolic layers. The approach is shown to be both effective and convergent in the context of planar mechanisms. Additionally, we introduce MSynth, a novel benchmark for planar mechanism synthesis, and perform a comprehensive analysis of the impact of the model components. We further demonstrate that symbolic regression prompts unlock mechanistic insights only when applied to sufficiently large architectures.