Abstract:Large-language-model (LLM)-based AI agents have recently showcased impressive versatility by employing dynamic reasoning, an adaptive, multi-step process that coordinates with external tools. This shift from static, single-turn inference to agentic, multi-turn workflows broadens task generalization and behavioral flexibility, but it also introduces serious concerns about system-level cost, efficiency, and sustainability. This paper presents the first comprehensive system-level analysis of AI agents, quantifying their resource usage, latency behavior, energy consumption, and datacenter-wide power consumption demands across diverse agent designs and test-time scaling strategies. We further characterize how AI agent design choices, such as few-shot prompting, reflection depth, and parallel reasoning, impact accuracy-cost tradeoffs. Our findings reveal that while agents improve accuracy with increased compute, they suffer from rapidly diminishing returns, widening latency variance, and unsustainable infrastructure costs. Through detailed evaluation of representative agents, we highlight the profound computational demands introduced by AI agent workflows, uncovering a looming sustainability crisis. These results call for a paradigm shift in agent design toward compute-efficient reasoning, balancing performance with deployability under real-world constraints.
Abstract:Graph neural networks (GNNs) can extract features by learning both the representation of each objects (i.e., graph nodes) and the relationship across different objects (i.e., the edges that connect nodes), achieving state-of-the-art performance in various graph-based tasks. Despite its strengths, utilizing these algorithms in a production environment faces several challenges as the number of graph nodes and edges amount to several billions to hundreds of billions scale, requiring substantial storage space for training. Unfortunately, state-of-the-art ML frameworks employ an in-memory processing model which significantly hampers the productivity of ML practitioners as it mandates the overall working set to fit within DRAM capacity. In this work, we first conduct a detailed characterization on a state-of-the-art, large-scale GNN training algorithm, GraphSAGE. Based on the characterization, we then explore the feasibility of utilizing capacity-optimized NVM SSDs for storing memory-hungry GNN data, which enables large-scale GNN training beyond the limits of main memory size. Given the large performance gap between DRAM and SSD, however, blindly utilizing SSDs as a direct substitute for DRAM leads to significant performance loss. We therefore develop SmartSAGE, our software/hardware co-design based on an in-storage processing (ISP) architecture. Our work demonstrates that an ISP based large-scale GNN training system can achieve both high capacity storage and high performance, opening up opportunities for ML practitioners to train large GNN datasets without being hampered by the physical limitations of main memory size.