Abstract:High-quality reconstruction of Aerosol Optical Depth (AOD) fields is critical for Atmosphere monitoring, yet current models remain constrained by the scarcity of complete training data and a lack of uncertainty quantification.To address these limitations, we propose AODDiff, a probabilistic reconstruction framework based on diffusion-based Bayesian inference. By leveraging the learned spatiotemporal probability distribution of the AOD field as a generative prior, this framework can be flexibly adapted to various reconstruction tasks without requiring task-specific retraining. We first introduce a corruption-aware training strategy to learns a spatiotemporal AOD prior solely from naturally incomplete data. Subsequently, we employ a decoupled annealing posterior sampling strategy that enables the more effective and integration of heterogeneous observations as constraints to guide the generation process. We validate the proposed framework through extensive experiments on Reanalysis data. Results across downscaling and inpainting tasks confirm the efficacy and robustness of AODDiff, specifically demonstrating its advantage in maintaining high spatial spectral fidelity. Furthermore, as a generative model, AODDiff inherently enables uncertainty quantification via multiple sampling, offering critical confidence metrics for downstream applications.
Abstract:Graph contrastive learning (GCL) learns node and graph representations by contrasting multiple views of the same graph. Existing methods typically rely on fixed, handcrafted views-usually a local and a global perspective, which limits their ability to capture multi-scale structural patterns. We present an augmentation-free, multi-view GCL framework grounded in fractional-order continuous dynamics. By varying the fractional derivative order $α\in (0,1]$, our encoders produce a continuous spectrum of views: small $α$ yields localized features, while large $α$ induces broader, global aggregation. We treat $α$ as a learnable parameter so the model can adapt diffusion scales to the data and automatically discover informative views. This principled approach generates diverse, complementary representations without manual augmentations. Extensive experiments on standard benchmarks demonstrate that our method produces more robust and expressive embeddings and outperforms state-of-the-art GCL baselines.