Abstract:The Gilbert-Pollak Conjecture \citep{gilbert1968steiner}, also known as the Steiner Ratio Conjecture, states that for any finite point set in the Euclidean plane, the Steiner minimum tree has length at least $\sqrt{3}/2 \approx 0.866$ times that of the Euclidean minimum spanning tree (the Steiner ratio). A sequence of improvements through the 1980s culminated in a lower bound of $0.824$, with no substantial progress reported over the past three decades. Recent advances in LLMs have demonstrated strong performance on contest-level mathematical problems, yet their potential for addressing open, research-level questions remains largely unexplored. In this work, we present a novel AI system for obtaining tighter lower bounds on the Steiner ratio. Rather than directly prompting LLMs to solve the conjecture, we task them with generating rule-constrained geometric lemmas implemented as executable code. These lemmas are then used to construct a collection of specialized functions, which we call verification functions, that yield theoretically certified lower bounds of the Steiner ratio. Through progressive lemma refinement driven by reflection, the system establishes a new certified lower bound of 0.8559 for the Steiner ratio. The entire research effort involves only thousands of LLM calls, demonstrating the strong potential of LLM-based systems for advanced mathematical research.

Abstract:Standard multi-agent reinforcement learning (MARL) algorithms are vulnerable to sim-to-real gaps. To address this, distributionally robust Markov games (RMGs) have been proposed to enhance robustness in MARL by optimizing the worst-case performance when game dynamics shift within a prescribed uncertainty set. Solving RMGs remains under-explored, from problem formulation to the development of sample-efficient algorithms. A notorious yet open challenge is if RMGs can escape the curse of multiagency, where the sample complexity scales exponentially with the number of agents. In this work, we propose a natural class of RMGs where the uncertainty set of each agent is shaped by both the environment and other agents' strategies in a best-response manner. We first establish the well-posedness of these RMGs by proving the existence of game-theoretic solutions such as robust Nash equilibria and coarse correlated equilibria (CCE). Assuming access to a generative model, we then introduce a sample-efficient algorithm for learning the CCE whose sample complexity scales polynomially with all relevant parameters. To the best of our knowledge, this is the first algorithm to break the curse of multiagency for RMGs.




Abstract:Designing expressive Graph Neural Networks (GNNs) is a fundamental topic in the graph learning community. So far, GNN expressiveness has been primarily assessed via the Weisfeiler-Lehman (WL) hierarchy. However, such an expressivity measure has notable limitations: it is inherently coarse, qualitative, and may not well reflect practical requirements (e.g., the ability to encode substructures). In this paper, we introduce a unified framework for quantitatively studying the expressiveness of GNN architectures, addressing all the above limitations. Specifically, we identify a fundamental expressivity measure termed homomorphism expressivity, which quantifies the ability of GNN models to count graphs under homomorphism. Homomorphism expressivity offers a complete and practical assessment tool: the completeness enables direct expressivity comparisons between GNN models, while the practicality allows for understanding concrete GNN abilities such as subgraph counting. By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity for both invariant and equivariant settings. Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions. Empirically, extensive experiments on both synthetic and real-world tasks verify our theory, showing that the practical performance of GNN models aligns well with the proposed metric.