Abstract:Deep Learning-based Text Understanding (DLTU) is the backbone technique behind various applications, including question answering, machine translation, and text classification. Despite its tremendous popularity, the security vulnerabilities of DLTU are still largely unknown, which is highly concerning given its increasing use in security-sensitive applications such as sentiment analysis and toxic content detection. In this paper, we show that DLTU is inherently vulnerable to adversarial text attacks, in which maliciously crafted texts trigger target DLTU systems and services to misbehave. Specifically, we present TextBugger, a general attack framework for generating adversarial texts. In contrast to prior works, TextBugger differs in significant ways: (i) effective -- it outperforms state-of-the-art attacks in terms of attack success rate; (ii) evasive -- it preserves the utility of benign text, with 94.9\% of the adversarial text correctly recognized by human readers; and (iii) efficient -- it generates adversarial text with computational complexity sub-linear to the text length. We empirically evaluate TextBugger on a set of real-world DLTU systems and services used for sentiment analysis and toxic content detection, demonstrating its effectiveness, evasiveness, and efficiency. For instance, TextBugger achieves 100\% success rate on the IMDB dataset based on Amazon AWS Comprehend within 4.61 seconds and preserves 97\% semantic similarity. We further discuss possible defense mechanisms to mitigate such attack and the adversary's potential countermeasures, which leads to promising directions for further research.
Abstract:Neyshabur and Srebro proposed Simple-LSH, which is the state-of-the-art hashing method for maximum inner product search (MIPS) with performance guarantee. We found that the performance of Simple-LSH, in both theory and practice, suffers from long tails in the 2-norm distribution of real datasets. We propose Norm-ranging LSH, which addresses the excessive normalization problem caused by long tails in Simple-LSH by partitioning a dataset into multiple sub-datasets and building a hash index for each sub-dataset independently. We prove that Norm-ranging LSH has lower query time complexity than Simple-LSH. We also show that the idea of partitioning the dataset can improve other hashing based methods for MIPS. To support efficient query processing on the hash indexes of the sub-datasets, a novel similarity metric is formulated. Experiments show that Norm-ranging LSH achieves an order of magnitude speedup over Simple-LSH for the same recall, thus significantly benefiting applications that involve MIPS.