Abstract:The explosion in artificial intelligence (AI) applications is pushing the development of AI-dedicated data centers (AIDCs), creating management challenges that traditional methods and standalone AI solutions struggle to address. While digital twins are beneficial for AI-based design validation and operational optimization, current AI methods for their creation face limitations. Specifically, physical AI (PhyAI) aims to capture the underlying physical laws, which demands extensive, case-specific customization, and generative AI (GenAI) can produce inaccurate or hallucinated results. We propose Fusion Intelligence, a novel framework synergizing GenAI's automation with PhyAI's domain grounding. In this dual-agent collaboration, GenAI interprets natural language prompts to generate tokenized AIDC digital twins. Subsequently, PhyAI optimizes these generated twins by enforcing physical constraints and assimilating real-time data. Case studies demonstrate the advantages of our framework in automating the creation and validation of AIDC digital twins. These twins deliver predictive analytics to support power usage effectiveness (PUE) optimization in the design stage. With operational data collected, the digital twin accuracy is further improved compared with pure physics-based models developed by human experts. Fusion Intelligence offers a promising pathway to accelerate digital transformation. It enables more reliable and efficient AI-driven digital transformation for a broad range of mission-critical infrastructures.
Abstract:Data centers (DCs) as mission-critical infrastructures are pivotal in powering the growth of artificial intelligence (AI) and the digital economy. The evolution from Internet DC to AI DC has introduced new challenges in operating and managing data centers for improved business resilience and reduced total cost of ownership. As a result, new paradigms, beyond the traditional approaches based on best practices, must be in order for future data centers. In this research, we propose and develop a novel Physical AI (PhyAI) framework for advancing DC operations and management. Our system leverages the emerging capabilities of state-of-the-art industrial products and our in-house research and development. Specifically, it presents three core modules, namely: 1) an industry-grade in-house simulation engine to simulate DC operations in a highly accurate manner, 2) an AI engine built upon NVIDIA PhysicsNemo for the training and evaluation of physics-informed machine learning (PIML) models, and 3) a digital twin platform built upon NVIDIA Omniverse for our proposed 5-tier digital twin framework. This system presents a scalable and adaptable solution to digitalize, optimize, and automate future data center operations and management, by enabling real-time digital twins for future data centers. To illustrate its effectiveness, we present a compelling case study on building a surrogate model for predicting the thermal and airflow profiles of a large-scale DC in a real-time manner. Our results demonstrate its superior performance over traditional time-consuming Computational Fluid Dynamics/Heat Transfer (CFD/HT) simulation, with a median absolute temperature prediction error of 0.18 {\deg}C. This emerging approach would open doors to several potential research directions for advancing Physical AI in future DC operations.