Abstract:Understanding the morphological structure of medical images and precisely segmenting the region of interest or abnormality is an important task that can assist in diagnosis. However, the unique properties of medical imaging make clear segmentation difficult, and the high cost and time-consuming task of labeling leads to a coarse-grained representation of ground truth. Facing with these problems, we propose a novel Diffusion Transformer Segmentation (DTS) model for robust segmentation in the presence of noise. We propose an alternative to the dominant Denoising U-Net encoder through experiments applying a transformer architecture, which captures global dependency through self-attention. Additionally, we propose k-neighbor label smoothing, reverse boundary attention, and self-supervised learning with morphology-driven learning to improve the ability to identify complex structures. Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities, including CT, MRI, and lesion images.
Abstract:Certain cancer types, namely pancreatic cancer is difficult to detect at an early stage; sparking the importance of discovering the causal relationship between biomarkers and cancer to identify cancer efficiently. By allowing for the detection and monitoring of specific biomarkers through a non-invasive method, liquid biopsies enhance the precision and efficacy of medical interventions, advocating the move towards personalized healthcare. Several machine learning algorithms such as Random Forest, SVM are utilized for classification, yet causing inefficiency due to the need for conducting hyperparameter tuning. We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929 and simultaneously achieving robustness especially on highly imbalanced datasets compared to other ML algorithms in several binary classification tasks (e.g. breast invasive carcinoma; BRCA vs. non-BRCA). We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464) while merely using 500 PCA features; distinguishable from previous studies where they used more than 2,000 features for similar results.
Abstract:Understanding commonsense knowledge is crucial in the field of Natural Language Processing (NLP). However, the presence of demographic terms in commonsense knowledge poses a potential risk of compromising the performance of NLP models. This study aims to investigate and propose methods for enhancing the performance and effectiveness of a commonsense polarization classifier by mitigating the influence of demographic terms. Three methods are introduced in this paper: (1) hierarchical generalization of demographic terms (2) threshold-based augmentation and (3) integration of hierarchical generalization and threshold-based augmentation methods (IHTA). The first method involves replacing demographic terms with more general ones based on a term hierarchy ontology, aiming to mitigate the influence of specific terms. To address the limited bias-related information, the second method measures the polarization of demographic terms by comparing the changes in the model's predictions when these terms are masked versus unmasked. This method augments commonsense sentences containing terms with high polarization values by replacing their predicates with synonyms generated by ChatGPT. The third method combines the two approaches, starting with threshold-based augmentation followed by hierarchical generalization. The experiments show that the first method increases the accuracy over the baseline by 2.33%, and the second one by 0.96% over standard augmentation methods. The IHTA techniques yielded an 8.82% and 9.96% higher accuracy than threshold-based and standard augmentation methods, respectively.
Abstract:LLMs trained in the understanding of programming syntax are now providing effective assistance to developers and are being used in programming education such as in generation of coding problem examples or providing code explanations. A key aspect of programming education is understanding and dealing with error message. However, 'logical errors' in which the program operates against the programmer's intentions do not receive error messages from the compiler. In this study, building on existing research on programming errors, we first define the types of logical errors that can occur in programming in general. Based on the definition, we propose an effective approach for detecting logical errors with LLMs that makes use of relations among error types in the Chain-of-Thought and Tree-of-Thought prompts. The experimental results indicate that when such logical error descriptions in the prompt are used, the average classifition performance is about 21% higher than the ones without them. We also conducted an experiment for exploiting the relations among errors in generating a new logical error dataset using LLMs. As there is very limited dataset for logical errors such benchmark dataset can be very useful for various programming related applications. We expect that our work can assist novice programmers in identifying the causes of code errors and correct them more effectively.
Abstract:Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, \textbf{Culturally-aware Image Captioning (CIC)}, that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Our code and dataset will be made publicly available upon acceptance.
Abstract:Accurate representation in media is known to improve the well-being of the people who consume it. Generative image models trained on large web-crawled datasets such as LAION are known to produce images with harmful stereotypes and misrepresentations of cultures. We improve inclusive representation in generated images by (1) engaging with communities to collect a culturally representative dataset that we call the Cross-Cultural Understanding Benchmark (CCUB) and (2) proposing a novel Self-Contrastive Fine-Tuning (SCoFT) method that leverages the model's known biases to self-improve. SCoFT is designed to prevent overfitting on small datasets, encode only high-level information from the data, and shift the generated distribution away from misrepresentations encoded in a pretrained model. Our user study conducted on 51 participants from 5 different countries based on their self-selected national cultural affiliation shows that fine-tuning on CCUB consistently generates images with higher cultural relevance and fewer stereotypes when compared to the Stable Diffusion baseline, which is further improved with our SCoFT technique.
Abstract:It has been shown that accurate representation in media improves the well-being of the people who consume it. By contrast, inaccurate representations can negatively affect viewers and lead to harmful perceptions of other cultures. To achieve inclusive representation in generated images, we propose a culturally-aware priming approach for text-to-image synthesis using a small but culturally curated dataset that we collected, known here as Cross-Cultural Understanding Benchmark (CCUB) Dataset, to fight the bias prevalent in giant datasets. Our proposed approach is comprised of two fine-tuning techniques: (1) Adding visual context via fine-tuning a pre-trained text-to-image synthesis model, Stable Diffusion, on the CCUB text-image pairs, and (2) Adding semantic context via automated prompt engineering using the fine-tuned large language model, GPT-3, trained on our CCUB culturally-aware text data. CCUB dataset is curated and our approach is evaluated by people who have a personal relationship with that particular culture. Our experiments indicate that priming using both text and image is effective in improving the cultural relevance and decreasing the offensiveness of generated images while maintaining quality.
Abstract:Attention has become one of the most commonly used mechanisms in deep learning approaches. The attention mechanism can help the system focus more on the feature space's critical regions. For example, high amplitude regions can play an important role for Speech Emotion Recognition (SER). In this paper, we identify misalignments between the attention and the signal amplitude in the existing multi-head self-attention. To improve the attention area, we propose to use a Focus-Attention (FA) mechanism and a novel Calibration-Attention (CA) mechanism in combination with the multi-head self-attention. Through the FA mechanism, the network can detect the largest amplitude part in the segment. By employing the CA mechanism, the network can modulate the information flow by assigning different weights to each attention head and improve the utilization of surrounding contexts. To evaluate the proposed method, experiments are performed with the IEMOCAP and RAVDESS datasets. Experimental results show that the proposed framework significantly outperforms the state-of-the-art approaches on both datasets.
Abstract:Learning expressive representation is crucial in deep learning. In speech emotion recognition (SER), vacuum regions or noises in the speech interfere with expressive representation learning. However, traditional RNN-based models are susceptible to such noise. Recently, Graph Neural Network (GNN) has demonstrated its effectiveness for representation learning, and we adopt this framework for SER. In particular, we propose a cosine similarity-based graph as an ideal graph structure for representation learning in SER. We present a Cosine similarity-based Graph Convolutional Network (CoGCN) that is robust to perturbation and noise. Experimental results show that our method outperforms state-of-the-art methods or provides competitive results with a significant model size reduction with only 1/30 parameters.
Abstract:Knowledge-based visual question answering (KVQA) task aims to answer questions that require additional external knowledge as well as an understanding of images and questions. Recent studies on KVQA inject an external knowledge in a multi-modal form, and as more knowledge is used, irrelevant information may be added and can confuse the question answering. In order to properly use the knowledge, this study proposes the following: 1) we introduce a novel semantic inconsistency measure computed from caption uncertainty and semantic similarity; 2) we suggest a new external knowledge assimilation method based on the semantic inconsistency measure and apply it to integrate explicit knowledge and implicit knowledge for KVQA; 3) the proposed method is evaluated with the OK-VQA dataset and achieves the state-of-the-art performance.