Abstract:In the pursuit of energy net zero within smart cities, transportation electrification plays a pivotal role. The adoption of Electric Vehicles (EVs) keeps increasing, making energy management of EV charging stations critically important. While previous studies have managed to reduce energy cost of EV charging while maintaining grid stability, they often overlook the robustness of EV charging management against uncertainties of various forms, such as varying charging behaviors and possible faults in faults in some chargers. To address the gap, a novel Multi-Agent Reinforcement Learning (MARL) approach is proposed treating each charger to be an agent and coordinate all the agents in the EV charging station with solar photovoltaics in a more realistic scenario, where system faults may occur. A Long Short-Term Memory (LSTM) network is incorporated in the MARL algorithm to extract temporal features from time-series. Additionally, a dense reward mechanism is designed for training the agents in the MARL algorithm to improve EV charging experience. Through validation on a real-world dataset, we show that our approach is robust against system uncertainties and faults and also effective in minimizing EV charging costs and maximizing charging service satisfaction.
Abstract:The increasing integration of electric vehicles (EVs) into the grid can pose a significant risk to the distribution system operation in the absence of coordination. In response to the need for effective coordination of EVs within the distribution network, this paper presents a safety-aware reinforcement learning (RL) algorithm designed to manage EV charging stations while ensuring the satisfaction of system constraints. Unlike existing methods, our proposed algorithm does not rely on explicit penalties for constraint violations, eliminating the need for penalty coefficient tuning. Furthermore, managing EV charging stations is further complicated by multiple uncertainties, notably the variability in solar energy generation and energy prices. To address this challenge, we develop an off-policy RL algorithm to efficiently utilize data to learn patterns in such uncertain environments. Our algorithm also incorporates a maximum entropy framework to enhance the RL algorithm's exploratory process, preventing convergence to local optimal solutions. Simulation results demonstrate that our algorithm outperforms traditional RL algorithms in managing EV charging in the distribution network.
Abstract:In response to the growing uptake of distributed energy resources (DERs), community batteries have emerged as a promising solution to support renewable energy integration, reduce peak load, and enhance grid reliability. This paper presents a deep reinforcement learning (RL) strategy, centered around the soft actor-critic (SAC) algorithm, to schedule a community battery system in the presence of uncertainties, such as solar photovoltaic (PV) generation, local demand, and real-time energy prices. We position the community battery to play a versatile role, in integrating local PV energy, reducing peak load, and exploiting energy price fluctuations for arbitrage, thereby minimizing the system cost. To improve exploration and convergence during RL training, we utilize the noisy network technique. This paper conducts a comparative study of different RL algorithms, including proximal policy optimization (PPO) and deep deterministic policy gradient (DDPG) algorithms, to evaluate their effectiveness in the community battery scheduling problem. The results demonstrate the potential of RL in addressing community battery scheduling challenges and show that the SAC algorithm achieves the best performance compared to RL and optimization benchmarks.
Abstract:Effective energy management of electric vehicle (EV) charging stations is critical to supporting the transport sector's sustainable energy transition. This paper addresses the EV charging coordination by considering vehicle-to-vehicle (V2V) energy exchange as the flexibility to harness in EV charging stations. Moreover, this paper takes into account EV user experiences, such as charging satisfaction and fairness. We propose a Multi-Agent Reinforcement Learning (MARL) approach to coordinate EV charging with V2V energy exchange while considering uncertainties in the EV arrival time, energy price, and solar energy generation. The exploration capability of MARL is enhanced by introducing parameter noise into MARL's neural network models. Experimental results demonstrate the superior performance and scalability of our proposed method compared to traditional optimization baselines. The decentralized execution of the algorithm enables it to effectively deal with partial system faults in the charging station.