In the pursuit of energy net zero within smart cities, transportation electrification plays a pivotal role. The adoption of Electric Vehicles (EVs) keeps increasing, making energy management of EV charging stations critically important. While previous studies have managed to reduce energy cost of EV charging while maintaining grid stability, they often overlook the robustness of EV charging management against uncertainties of various forms, such as varying charging behaviors and possible faults in faults in some chargers. To address the gap, a novel Multi-Agent Reinforcement Learning (MARL) approach is proposed treating each charger to be an agent and coordinate all the agents in the EV charging station with solar photovoltaics in a more realistic scenario, where system faults may occur. A Long Short-Term Memory (LSTM) network is incorporated in the MARL algorithm to extract temporal features from time-series. Additionally, a dense reward mechanism is designed for training the agents in the MARL algorithm to improve EV charging experience. Through validation on a real-world dataset, we show that our approach is robust against system uncertainties and faults and also effective in minimizing EV charging costs and maximizing charging service satisfaction.