Abstract:Retrieval-Augmented Generation (RAG) and its Multimodal Retrieval-Augmented Generation (MRAG) significantly improve the knowledge coverage and contextual understanding of Large Language Models (LLMs) by introducing external knowledge sources. However, retrieval and multimodal fusion obscure content provenance, rendering existing membership inference methods unable to reliably attribute generated outputs to pre-training, external retrieval, or user input, thus undermining privacy leakage accountability To address these challenges, we propose the first Source-aware Membership Audit (SMA) that enables fine-grained source attribution of generated content in a semi-black-box setting with retrieval control capabilities.To address the environmental constraints of semi-black-box auditing, we further design an attribution estimation mechanism based on zero-order optimization, which robustly approximates the true influence of input tokens on the output through large-scale perturbation sampling and ridge regression modeling. In addition, SMA introduces a cross-modal attribution technique that projects image inputs into textual descriptions via MLLMs, enabling token-level attribution in the text modality, which for the first time facilitates membership inference on image retrieval traces in MRAG systems. This work shifts the focus of membership inference from 'whether the data has been memorized' to 'where the content is sourced from', offering a novel perspective for auditing data provenance in complex generative systems.
Abstract:The advancement of deep object detectors has greatly affected safety-critical fields like autonomous driving. However, physical adversarial camouflage poses a significant security risk by altering object textures to deceive detectors. Existing techniques struggle with variable physical environments, facing two main challenges: 1) inconsistent sampling point densities across distances hinder the gradient optimization from ensuring local continuity, and 2) updating texture gradients from multiple angles causes conflicts, reducing optimization stability and attack effectiveness. To address these issues, we propose a novel adversarial camouflage framework based on gradient optimization. First, we introduce a gradient calibration strategy, which ensures consistent gradient updates across distances by propagating gradients from sparsely to unsampled texture points. Additionally, we develop a gradient decorrelation method, which prioritizes and orthogonalizes gradients based on loss values, enhancing stability and effectiveness in multi-angle optimization by eliminating redundant or conflicting updates. Extensive experimental results on various detection models, angles and distances show that our method significantly exceeds the state of the art, with an average increase in attack success rate (ASR) of 13.46% across distances and 11.03% across angles. Furthermore, empirical evaluation in real-world scenarios highlights the need for more robust system design.