Sherman
Abstract:Byzantine attacks during model aggregation in Federated Learning (FL) threaten training integrity by manipulating malicious clients' updates. Existing methods struggle with limited robustness under high malicious client ratios and sensitivity to non-i.i.d. data, leading to degraded accuracy. To address this, we propose FLTG, a novel aggregation algorithm integrating angle-based defense and dynamic reference selection. FLTG first filters clients via ReLU-clipped cosine similarity, leveraging a server-side clean dataset to exclude misaligned updates. It then dynamically selects a reference client based on the prior global model to mitigate non-i.i.d. bias, assigns aggregation weights inversely proportional to angular deviations, and normalizes update magnitudes to suppress malicious scaling. Evaluations across datasets of varying complexity under five classic attacks demonstrate FLTG's superiority over state-of-the-art methods under extreme bias scenarios and sustains robustness with a higher proportion(over 50%) of malicious clients.
Abstract:In intelligent transportation systems (ITSs), incorporating pedestrians and vehicles in-the-loop is crucial for developing realistic and safe traffic management solutions. However, there is falls short of simulating complex real-world ITS scenarios, primarily due to the lack of a digital twin implementation framework for characterizing interactions between pedestrians and vehicles at different locations in different traffic environments. In this article, we propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop. Specifically, SVFDT builds comprehensive pedestrian-vehicle interaction models by leveraging multi-source traffic surveillance videos. Its architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime. We analyze key design requirements and challenges and present core guidelines for SVFDT's system implementation. A testbed evaluation demonstrates its effectiveness in optimizing traffic management. Comparisons with traditional terminal-server frameworks highlight SV-FDT's advantages in mirroring delays, recognition accuracy, and subjective evaluation. Finally, we identify some open challenges and discuss future research directions.