Abstract:The proliferation of large-scale datasets poses a major computational challenge to model training. The traditional data subsampling method works as a static, task independent preprocessing step which usually discards information that is critical to downstream prediction. In this paper, we introduce the antagonistic soft selection subsampling (ASSS) framework as a novel paradigm that reconstructs data reduction into a differentiable end-to-end learning problem. ASSS uses the adversarial game between selector network and task network, and selector network learning assigns continuous importance weights to samples. This direct optimization implemented by Gumbel-Softmax relaxation allows the selector to identify and retain samples with the maximum amount of information for a specific task target under the guidance of the loss function that balances the fidelity and sparsity of the prediction. Theoretical analysis links this framework with the information bottleneck principle. Comprehensive experiments on four large-scale real world datasets show that ASSS has always been better than heuristic subsampling baselines such as clustering and nearest neighbor thinning in maintaining model performance. It is worth noting that ASSS can not only match, but also sometimes exceed the training performance of the entire dataset, showcasing the effect of intelligent denoising. This work establishes task aware data subsampling as a learnable component, providing a principled solution for effective large-scale data learning.
Abstract:Event cameras have the potential to revolutionize vision systems with their high temporal resolution and dynamic range, yet they remain susceptible to lens flare, a fundamental optical artifact that causes severe degradation. In event streams, this optical artifact forms a complex, spatio-temporal distortion that has been largely overlooked. We present E-Deflare, the first systematic framework for removing lens flare from event camera data. We first establish the theoretical foundation by deriving a physics-grounded forward model of the non-linear suppression mechanism. This insight enables the creation of the E-Deflare Benchmark, a comprehensive resource featuring a large-scale simulated training set, E-Flare-2.7K, and the first-ever paired real-world test set, E-Flare-R, captured by our novel optical system. Empowered by this benchmark, we design E-DeflareNet, which achieves state-of-the-art restoration performance. Extensive experiments validate our approach and demonstrate clear benefits for downstream tasks. Code and datasets are publicly available.