Abstract:Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
Abstract:Scientific research demands sophisticated reasoning over multimodal data, a challenge especially prevalent in biology. Despite recent advances in multimodal large language models (MLLMs) for AI-assisted research, existing multimodal reasoning benchmarks only target up to college-level difficulty, while research-level benchmarks emphasize lower-level perception, falling short of the complex multimodal reasoning needed for scientific discovery. To bridge this gap, we introduce MicroVQA, a visual-question answering (VQA) benchmark designed to assess three reasoning capabilities vital in research workflows: expert image understanding, hypothesis generation, and experiment proposal. MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities, ensuring VQA samples represent real scientific practice. In constructing the benchmark, we find that standard MCQ generation methods induce language shortcuts, motivating a new two-stage pipeline: an optimized LLM prompt structures question-answer pairs into MCQs; then, an agent-based `RefineBot' updates them to remove shortcuts. Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53\%; models with smaller LLMs only slightly underperform top models, suggesting that language-based reasoning is less challenging than multimodal reasoning; and tuning with scientific articles enhances performance. Expert analysis of chain-of-thought responses shows that perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors. These insights highlight the challenges in multimodal scientific reasoning, showing MicroVQA is a valuable resource advancing AI-driven biomedical research. MicroVQA is available at https://huggingface.co/datasets/jmhb/microvqa, and project page at https://jmhb0.github.io/microvqa.