Abstract:Background: Emergency department (ED) overcrowding remains a major challenge, causing delays in care and increased operational strain. Hospital management often reacts to congestion after it occurs. Machine learning predictive modeling offers a proactive approach by forecasting patient flow metrics, such as waiting count, to improve resource planning and hospital efficiency. Objective: This study develops machine learning models to predict ED waiting room occupancy at two time scales. The hourly model forecasts the waiting count six hours ahead (e.g., a 1 PM prediction for 7 PM), while the daily model estimates the average waiting count for the next 24 hours (e.g., a 5 PM prediction for the following day's average). These tools support staffing decisions and enable earlier interventions to reduce overcrowding. Methods: Data from a partner hospital's ED in the southeastern United States were used, integrating internal metrics and external features. Eleven machine learning algorithms, including traditional and deep learning models, were trained and evaluated. Feature combinations were optimized, and performance was assessed across varying patient volumes and hours. Results: TSiTPlus achieved the best hourly prediction (MAE: 4.19, MSE: 29.32). The mean hourly waiting count was 18.11, with a standard deviation of 9.77. Accuracy varied by hour, with MAEs ranging from 2.45 (11 PM) to 5.45 (8 PM). Extreme case analysis at one, two, and three standard deviations above the mean showed MAEs of 6.16, 10.16, and 15.59, respectively. For daily predictions, XCMPlus performed best (MAE: 2.00, MSE: 6.64), with a daily mean of 18.11 and standard deviation of 4.51. Conclusions: These models accurately forecast ED waiting room occupancy and support proactive resource allocation. Their implementation has the potential to improve patient flow and reduce overcrowding in emergency care settings.
Abstract:3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture models that are sufficient to reconstruct faces captured in unconstrained conditions ("in-the-wild"). In this paper, we propose the first, to the best of our knowledge, "in-the-wild" 3DMM by combining a powerful statistical model of facial shape, which describes both identity and expression, with an "in-the-wild" texture model. We show that the employment of such an "in-the-wild" texture model greatly simplifies the fitting procedure, because there is no need to optimize with regards to the illumination parameters. Furthermore, we propose a new fast algorithm for fitting the 3DMM in arbitrary images. Finally, we have captured the first 3D facial database with relatively unconstrained conditions and report quantitative evaluations with state-of-the-art performance. Complementary qualitative reconstruction results are demonstrated on standard "in-the-wild" facial databases. An open source implementation of our technique is released as part of the Menpo Project.
Abstract:We investigate the difference between using an $\ell_1$ penalty versus an $\ell_1$ constraint in generalized eigenvalue problems, such as principal component analysis and discriminant analysis. Our main finding is that an $\ell_1$ penalty may fail to provide very sparse solutions; a severe disadvantage for variable selection that can be remedied by using an $\ell_1$ constraint. Our claims are supported both by empirical evidence and theoretical analysis. Finally, we illustrate the advantages of an $\ell_1$ constraint in the context of discriminant analysis and principal component analysis.