Abstract:Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide. Low-cost, accurate identification of key markers of AD is crucial for timely diagnosis and intervention. Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals. Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information, making the AD detection task difficult. Moreover, the limited availability of AD speech samples and variability in their speech styles pose significant challenges in developing robust speech-based AD detection models. To address these challenges, we propose DECT, a novel speech-based domain-specific approach leveraging large language models (LLMs) for fine-grained linguistic analysis and label-switched label-preserved data generation. Our study presents four novelties: We harness the summarizing capabilities of LLMs to identify and distill key Cognitive-Linguistic information from noisy speech transcripts, effectively filtering irrelevant information. We leverage the inherent linguistic knowledge of LLMs to extract linguistic markers from unstructured and heterogeneous audio transcripts. We exploit the compositional ability of LLMs to generate AD speech transcripts consisting of diverse linguistic patterns to overcome the speech data scarcity challenge and enhance the robustness of AD detection models. We use the augmented AD textual speech transcript dataset and a more fine-grained representation of AD textual speech transcript data to fine-tune the AD detection model. The results have shown that DECT demonstrates superior model performance with an 11% improvement in AD detection accuracy on the datasets from DementiaBank compared to the baselines.
Abstract:Air pollution has long been a serious environmental health challenge, especially in metropolitan cities, where air pollutant concentrations are exacerbated by the street canyon effect and high building density. Whilst accurately monitoring and forecasting air pollution are highly crucial, existing data-driven models fail to fully address the complex interaction between air pollution and urban dynamics. Our Deep-AIR, a novel hybrid deep learning framework that combines a convolutional neural network with a long short-term memory network, aims to address this gap to provide fine-grained city-wide air pollution estimation and station-wide forecast. Our proposed framework creates 1x1 convolution layers to strengthen the learning of cross-feature spatial interaction between air pollution and important urban dynamic features, particularly road density, building density/height, and street canyon effect. Using Hong Kong and Beijing as case studies, Deep-AIR achieves a higher accuracy than our baseline models. Our model attains an accuracy of 67.6%, 77.2%, and 66.1% in fine-grained hourly estimation, 1-hr, and 24-hr air pollution forecast for Hong Kong, and an accuracy of 65.0%, 75.3%, and 63.5% for Beijing. Our saliency analysis has revealed that for Hong Kong, street canyon and road density are the best estimators for NO2, while meteorology is the best estimator for PM2.5.
Abstract:The intensity estimation of facial action units (AUs) is challenging due to subtle changes in the person's facial appearance. Previous approaches mainly rely on probabilistic models or predefined rules for modeling co-occurrence relationships among AUs, leading to limited generalization. In contrast, we present a new learning framework that automatically learns the latent relationships of AUs via establishing semantic correspondences between feature maps. In the heatmap regression-based network, feature maps preserve rich semantic information associated with AU intensities and locations. Moreover, the AU co-occurring pattern can be reflected by activating a set of feature channels, where each channel encodes a specific visual pattern of AU. This motivates us to model the correlation among feature channels, which implicitly represents the co-occurrence relationship of AU intensity levels. Specifically, we introduce a semantic correspondence convolution (SCC) module to dynamically compute the correspondences from deep and low resolution feature maps, and thus enhancing the discriminability of features. The experimental results demonstrate the effectiveness and the superior performance of our method on two benchmark datasets.
Abstract:Facial expressions play an important role in conveying the emotional states of human beings. Recently, deep learning approaches have been applied to image recognition field due to the discriminative power of Convolutional Neural Network (CNN). In this paper, we first propose a novel Multi-Region Ensemble CNN (MRE-CNN) framework for facial expression recognition, which aims to enhance the learning power of CNN models by capturing both the global and the local features from multiple human face sub-regions. Second, the weighted prediction scores from each sub-network are aggregated to produce the final prediction of high accuracy. Third, we investigate the effects of different sub-regions of the whole face on facial expression recognition. Our proposed method is evaluated based on two well-known publicly available facial expression databases: AFEW 7.0 and RAF-DB, and has been shown to achieve the state-of-the-art recognition accuracy.