Abstract:As intelligent systems are developed across diverse substrates - from machine learning models and neuromorphic hardware to in vitro neural cultures - understanding what gives a system agency has become increasingly important. Existing definitions, however, tend to rely on top-down descriptions that are difficult to quantify. We propose a bottom-up framework grounded in a system's information-processing order: the extent to which its transformation of input evolves over time. We identify three orders of information processing. Class I systems are reactive and memoryless, mapping inputs directly to outputs. Class II systems incorporate internal states that provide memory but follow fixed transformation rules. Class III systems are adaptive; their transformation rules themselves change as a function of prior activity. While not sufficient on their own, these dynamics represent necessary informational conditions for genuine agency. This hierarchy offers a measurable, substrate-independent way to identify the informational precursors of agency. We illustrate the framework with neurophysiological and computational examples, including thermostats and receptor-like memristors, and discuss its implications for the ethical and functional evaluation of systems that may exhibit agency.
Abstract:We present a low-compute non-generative system for implementing interview-style conversational agents which can be used to facilitate qualitative data collection through controlled interactions and quantitative analysis. Use cases include applications to tracking attitude formation or behavior change, where control or standardization over the conversational flow is desired. We show how our system can be easily adjusted through an online administrative panel to create new interviews, making the tool accessible without coding. Two case studies are presented as example applications, one regarding the Expressive Interviewing system for COVID-19 and the other a semi-structured interview to survey public opinion on emerging neurotechnology. Our code is open-source, allowing others to build off of our work and develop extensions for additional functionality.