Abstract:Researchers have identified various sources of tool positioning errors for articulated industrial robots and have proposed dedicated compensation strategies. However, these typically require individual, specialized experiments with separate models and identification procedures. This article presents a unified approach to the static calibration of industrial robots that identifies a robot model, including geometric and non-geometric effects (compliant bending, thermal deformation, gear transmission errors), using only a single, straightforward experiment for data collection. The model augments the kinematic chain with virtual joints for each modeled effect and realizes the identification using Gauss-Newton optimization with analytic gradients. Fisher information spectra show that the estimation is well-conditioned and the parameterization near-minimal, whereas systematic temporal cross-validation and model ablations demonstrate robustness of the model identification. The resulting model is very accurate and its identification robust, achieving a mean position error of 26.8 $μm$ on a KUKA KR30 industrial robot compared to 102.3 $μm$ for purely geometric calibration.