SU, CNRS
Abstract:This paper addresses the issue of building a part-based representation of a dataset of images. More precisely, we look for a non-negative, sparse decomposition of the images on a reduced set of atoms, in order to unveil a morphological and interpretable structure of the data. Additionally, we want this decomposition to be computed online for any new sample that is not part of the initial dataset. Therefore, our solution relies on a sparse, non-negative auto-encoder where the encoder is deep (for accuracy) and the decoder shallow (for interpretability). This method compares favorably to the state-of-the-art online methods on two datasets (MNIST and Fashion MNIST), according to classical metrics and to a new one we introduce, based on the invariance of the representation to morphological dilation.
Abstract:The aim of this paper is to introduce a new framework for defining abductive reasoning operators based on a notion of retraction in arbitrary logics defined as satisfaction systems. We show how this framework leads to the design of explanatory relations satisfying properties of abductive reasoning, and discuss its application to several logics. This extends previous work on propositional logics where retraction was defined as a morphological erosion. Here weaker properties are required for retraction, leading to a larger set of suitable operators for abduction for different logics.
Abstract:Several tasks in artificial intelligence require to be able to find models about knowledge dynamics. They include belief revision, fusion and belief merging, and abduction. In this paper we exploit the algebraic framework of mathematical morphology in the context of propositional logic, and define operations such as dilation or erosion of a set of formulas. We derive concrete operators, based on a semantic approach, that have an intuitive interpretation and that are formally well behaved, to perform revision, fusion and abduction. Computation and tractability are addressed, and simple examples illustrate the typical results that can be obtained.
Abstract:The classification of MRI images according to the anatomical field of view is a necessary task to solve when faced with the increasing quantity of medical images. In parallel, advances in deep learning makes it a suitable tool for computer vision problems. Using a common architecture (such as AlexNet) provides quite good results, but not sufficient for clinical use. Improving the model is not an easy task, due to the large number of hyper-parameters governing both the architecture and the training of the network, and to the limited understanding of their relevance. Since an exhaustive search is not tractable, we propose to optimize the network first by random search, and then by an adaptive search based on Gaussian Processes and Probability of Improvement. Applying this method on a large and varied MRI dataset, we show a substantial improvement between the baseline network and the final one (up to 20\% for the most difficult classes).
Abstract:Belief revision of knowledge bases represented by a set of sentences in a given logic has been extensively studied but for specific logics, mainly propositional, and also recently Horn and description logics. Here, we propose to generalize this operation from a model-theoretic point of view, by defining revision in an abstract model theory known under the name of satisfaction systems. In this framework, we generalize to any satisfaction systems the characterization of the well known AGM postulates given by Katsuno and Mendelzon for propositional logic in terms of minimal change among interpretations. Moreover, we study how to define revision, satisfying the AGM postulates, from relaxation notions that have been first introduced in description logics to define dissimilarity measures between concepts, and the consequence of which is to relax the set of models of the old belief until it becomes consistent with the new pieces of knowledge. We show how the proposed general framework can be instantiated in different logics such as propositional, first-order, description and Horn logics. In particular for description logics, we introduce several concrete relaxation operators tailored for the description logic $\ALC{}$ and its fragments $\EL{}$ and $\ELext{}$, discuss their properties and provide some illustrative examples.
Abstract:In this paper, we propose a novel approach for exploiting structural relations to track multiple objects that may undergo long-term occlusion and abrupt motion. We use a model-free approach that relies only on annotations given in the first frame of the video to track all the objects online, i.e. without knowledge from future frames. We initialize a probabilistic Attributed Relational Graph (ARG) from the first frame, which is incrementally updated along the video. Instead of using the structural information only to evaluate the scene, the proposed approach considers it to generate new tracking hypotheses. In this way, our method is capable of generating relevant object candidates that are used to improve or recover the track of lost objects. The proposed method is evaluated on several videos of table tennis, volleyball, and on the ACASVA dataset. The results show that our approach is very robust, flexible and able to outperform other state-of-the-art methods in sports videos that present structural patterns.
Abstract:As ontologies and description logics (DLs) reach out to a broader audience, several reasoning services are developed in this context. Belief revision is one of them, of prime importance when knowledge is prone to change and inconsistency. In this paper we address both the generalization of the well-known AGM postulates, and the definition of concrete and well-founded revision operators in different DL families. We introduce a model-theoretic version of the AGM postulates with a general definition of inconsistency, hence enlarging their scope to a wide family of non-classical logics, in particular negation-free DL families. We propose a general framework for defining revision operators based on the notion of relaxation, introduced recently for defining dissimilarity measures between DL concepts. A revision operator in this framework amounts to relax the set of models of the old belief until it reaches the sets of models of the new piece of knowledge. We demonstrate that such a relaxation-based revision operator defines a faithful assignment and satisfies the generalized AGM postulates. Another important contribution concerns the definition of several concrete relaxation operators suited to the syntax of some DLs (ALC and its fragments EL and ELU).
Abstract:This paper proposes a novel algorithm for the problem of structural image segmentation through an interactive model-based approach. Interaction is expressed in the model creation, which is done according to user traces drawn over a given input image. Both model and input are then represented by means of attributed relational graphs derived on the fly. Appearance features are taken into account as object attributes and structural properties are expressed as relational attributes. To cope with possible topological differences between both graphs, a new structure called the deformation graph is introduced. The segmentation process corresponds to finding a labelling of the input graph that minimizes the deformations introduced in the model when it is updated with input information. This approach has shown to be faster than other segmentation methods, with competitive output quality. Therefore, the method solves the problem of multiple label segmentation in an efficient way. Encouraging results on both natural and target-specific color images, as well as examples showing the reusability of the model, are presented and discussed.