Abstract:Accurate drug-target interaction (DTI) prediction is essential for computational drug discovery, yet existing models often rely on single-modality predefined molecular descriptors or sequence-based embeddings with limited representativeness. We propose Tensor-DTI, a contrastive learning framework that integrates multimodal embeddings from molecular graphs, protein language models, and binding-site predictions to improve interaction modeling. Tensor-DTI employs a siamese dual-encoder architecture, enabling it to capture both chemical and structural interaction features while distinguishing interacting from non-interacting pairs. Evaluations on multiple DTI benchmarks demonstrate that Tensor-DTI outperforms existing sequence-based and graph-based models. We also conduct large-scale inference experiments on CDK2 across billion-scale chemical libraries, where Tensor-DTI produces chemically plausible hit distributions even when CDK2 is withheld from training. In enrichment studies against Glide docking and Boltz-2 co-folder, Tensor-DTI remains competitive on CDK2 and improves the screening budget required to recover moderate fractions of high-affinity ligands on out-of-family targets under strict family-holdout splits. Additionally, we explore its applicability to protein-RNA and peptide-protein interactions. Our findings highlight the benefits of integrating multimodal information with contrastive objectives to enhance interaction-prediction accuracy and to provide more interpretable and reliability-aware models for virtual screening.
Abstract:In this study, we present ScoreFormer, a novel graph transformer model designed to accurately predict molecular docking scores, thereby optimizing high-throughput virtual screening (HTVS) in drug discovery. The architecture integrates Principal Neighborhood Aggregation (PNA) and Learnable Random Walk Positional Encodings (LRWPE), enhancing the model's ability to understand complex molecular structures and their relationship with their respective docking scores. This approach significantly surpasses traditional HTVS methods and recent Graph Neural Network (GNN) models in both recovery and efficiency due to a wider coverage of the chemical space and enhanced performance. Our results demonstrate that ScoreFormer achieves competitive performance in docking score prediction and offers a substantial 1.65-fold reduction in inference time compared to existing models. We evaluated ScoreFormer across multiple datasets under various conditions, confirming its robustness and reliability in identifying potential drug candidates rapidly.