Abstract:Accurate drug-target interaction (DTI) prediction is essential for computational drug discovery, yet existing models often rely on single-modality predefined molecular descriptors or sequence-based embeddings with limited representativeness. We propose Tensor-DTI, a contrastive learning framework that integrates multimodal embeddings from molecular graphs, protein language models, and binding-site predictions to improve interaction modeling. Tensor-DTI employs a siamese dual-encoder architecture, enabling it to capture both chemical and structural interaction features while distinguishing interacting from non-interacting pairs. Evaluations on multiple DTI benchmarks demonstrate that Tensor-DTI outperforms existing sequence-based and graph-based models. We also conduct large-scale inference experiments on CDK2 across billion-scale chemical libraries, where Tensor-DTI produces chemically plausible hit distributions even when CDK2 is withheld from training. In enrichment studies against Glide docking and Boltz-2 co-folder, Tensor-DTI remains competitive on CDK2 and improves the screening budget required to recover moderate fractions of high-affinity ligands on out-of-family targets under strict family-holdout splits. Additionally, we explore its applicability to protein-RNA and peptide-protein interactions. Our findings highlight the benefits of integrating multimodal information with contrastive objectives to enhance interaction-prediction accuracy and to provide more interpretable and reliability-aware models for virtual screening.




Abstract:Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety. Recent deep learning models often suffer from high computational costs and limited generalization across datasets. In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (MFPS), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network. We benchmark our implementation on DrugBank DDI splits and a drug-drug affinity (DDA) dataset from the Food and Drug Administration. MFPS along with MoLFormer and GCN representations achieve competitive performance across tasks, even in the more challenging leak-proof split, highlighting the sufficiency of simple molecular representations. Moreover, we are able to identify key molecular motifs and structural patterns relevant to drug interactions via gradient-based analyses using the representations under study. Despite these results, dataset limitations such as insufficient chemical diversity, limited dataset size, and inconsistent labeling impact robust evaluation and challenge the need for more complex approaches. Our work provides a meaningful baseline and emphasizes the need for better dataset curation and progressive complexity scaling.



Abstract:This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were asked to design and implement topological liftings, i.e. mappings between different data structures and topological domains --like hypergraphs, or simplicial/cell/combinatorial complexes. The challenge received 52 submissions satisfying all the requirements. This paper introduces the main scope of the challenge, and summarizes the main results and findings.