Abstract:Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
Abstract:Modern Video Large Language Models (VLLMs) often rely on uniform frame sampling for video understanding, but this approach frequently fails to capture critical information due to frame redundancy and variations in video content. We propose MaxInfo, a training-free method based on the maximum volume principle, which selects and retains the most representative frames from the input video. By maximizing the geometric volume formed by selected embeddings, MaxInfo ensures that the chosen frames cover the most informative regions of the embedding space, effectively reducing redundancy while preserving diversity. This method enhances the quality of input representations and improves long video comprehension performance across benchmarks. For instance, MaxInfo achieves a 3.28% improvement on LongVideoBench and a 6.4% improvement on EgoSchema for LLaVA-Video-7B. It also achieves a 3.47% improvement for LLaVA-Video-72B. The approach is simple to implement and works with existing VLLMs without the need for additional training, making it a practical and effective alternative to traditional uniform sampling methods.




Abstract:Last year, multimodal architectures served up a revolution in AI-based approaches and solutions, extending the capabilities of large language models (LLM). We propose an \textit{OmniFusion} model based on a pretrained LLM and adapters for visual modality. We evaluated and compared several architecture design principles for better text and visual data coupling: MLP and transformer adapters, various CLIP ViT-based encoders (SigLIP, InternVIT, etc.), and their fusing approach, image encoding method (whole image or tiles encoding) and two 7B LLMs (the proprietary one and open-source Mistral). Experiments on 8 visual-language benchmarks show the top score for the best OmniFusion setup in terms of different VQA tasks in comparison with open-source LLaVA-like solutions: VizWiz, Pope, MM-Vet, ScienceQA, MMBench, TextVQA, VQAv2, MMMU. We also propose a variety of situations, where OmniFusion provides highly-detailed answers in different domains: housekeeping, sightseeing, culture, medicine, handwritten and scanned equations recognition, etc. Mistral-based OmniFusion model is an open-source solution with weights, training and inference scripts available at https://github.com/AIRI-Institute/OmniFusion.