



Abstract:Spatial boundaries, such as ecological transitions or climatic regime interfaces, capture steep environmental gradients, and shifts in their structure can signal emerging environmental changes. Quantifying uncertainty in spatial boundary locations and formally testing for temporal shifts remains challenging, especially when boundaries are derived from noisy, gridded environmental data. We present a unified framework that combines heteroskedastic Gaussian process (GP) regression with a scaled Maximum Absolute Difference (MAD) Global Envelope Test (GET) to estimate spatial boundary curves and assess whether they evolve over time. The heteroskedastic GP provides a flexible probabilistic reconstruction of boundary lines, capturing spatially varying mean structure and location specific variability, while the test offers a rigorous hypothesis testing tool for detecting departures from expected boundary behaviors. Simulation studies show that the proposed method achieves the correct size under the null and high power for detecting local boundary shifts. Applying our framework to the Sahel Sahara transition zone, using annual Koppen Trewartha climate classifications from 1960 to 1989, we find no statistically significant decade scale changes in the arid and semi arid or semi arid and non arid interfaces. However, the method successfully identifies localized boundary shifts during the extreme drought years of 1983 and 1984, consistent with climate studies documenting regional anomalies in these interfaces during that period.




Abstract:In this study, we examine a set of primary data collected from 484 students enrolled in a large public university in the Mid-Atlantic United States region during the early stages of the COVID-19 pandemic. The data, called Ties data, included students' demographic and support network information. The support network data comprised of information that highlighted the type of support, (i.e. emotional or educational; routine or intense). Using this data set, models for predicting students' academic achievement, quantified by their self-reported GPA, were created using Chi-Square Automatic Interaction Detection (CHAID), a decision tree algorithm, and cforest, a random forest algorithm that uses conditional inference trees. We compare the methods' accuracy and variation in the set of important variables suggested by each algorithm. Each algorithm found different variables important for different student demographics with some overlap. For White students, different types of educational support were important in predicting academic achievement, while for non-White students, different types of emotional support were important in predicting academic achievement. The presence of differing types of routine support were important in predicting academic achievement for cisgender women, while differing types of intense support were important in predicting academic achievement for cisgender men.