Alert button
Picture for Inchul Hwang

Inchul Hwang

Alert button

Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification

Add code
Bookmark button
Alert button
Apr 02, 2024
Michael Mitsios, Georgios Vamvoukakis, Georgia Maniati, Nikolaos Ellinas, Georgios Dimitriou, Konstantinos Markopoulos, Panos Kakoulidis, Alexandra Vioni, Myrsini Christidou, Junkwang Oh, Gunu Jho, Inchul Hwang, Georgios Vardaxoglou, Aimilios Chalamandaris, Pirros Tsiakoulis, Spyros Raptis

Viaarxiv icon

Low-Resource Cross-Domain Singing Voice Synthesis via Reduced Self-Supervised Speech Representations

Add code
Bookmark button
Alert button
Feb 02, 2024
Panos Kakoulidis, Nikolaos Ellinas, Georgios Vamvoukakis, Myrsini Christidou, Alexandra Vioni, Georgia Maniati, Junkwang Oh, Gunu Jho, Inchul Hwang, Pirros Tsiakoulis, Aimilios Chalamandaris

Viaarxiv icon

Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis

Add code
Bookmark button
Alert button
Nov 02, 2022
Konstantinos Klapsas, Karolos Nikitaras, Nikolaos Ellinas, June Sig Sung, Inchul Hwang, Spyros Raptis, Aimilios Chalamandaris, Pirros Tsiakoulis

Figure 1 for Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis
Figure 2 for Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis
Figure 3 for Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis
Figure 4 for Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis
Viaarxiv icon

Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis

Add code
Bookmark button
Alert button
Nov 01, 2022
Karolos Nikitaras, Konstantinos Klapsas, Nikolaos Ellinas, Georgia Maniati, June Sig Sung, Inchul Hwang, Spyros Raptis, Aimilios Chalamandaris, Pirros Tsiakoulis

Figure 1 for Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis
Figure 2 for Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis
Figure 3 for Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis
Figure 4 for Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis
Viaarxiv icon

Generating Gender-Ambiguous Text-to-Speech Voices

Add code
Bookmark button
Alert button
Nov 01, 2022
Konstantinos Markopoulos, Georgia Maniati, Georgios Vamvoukakis, Nikolaos Ellinas, Karolos Nikitaras, Konstantinos Klapsas, Georgios Vardaxoglou, Panos Kakoulidis, June Sig Sung, Inchul Hwang, Aimilios Chalamandaris, Pirros Tsiakoulis, Spyros Raptis

Figure 1 for Generating Gender-Ambiguous Text-to-Speech Voices
Figure 2 for Generating Gender-Ambiguous Text-to-Speech Voices
Figure 3 for Generating Gender-Ambiguous Text-to-Speech Voices
Figure 4 for Generating Gender-Ambiguous Text-to-Speech Voices
Viaarxiv icon

Investigating Content-Aware Neural Text-To-Speech MOS Prediction Using Prosodic and Linguistic Features

Add code
Bookmark button
Alert button
Nov 01, 2022
Alexandra Vioni, Georgia Maniati, Nikolaos Ellinas, June Sig Sung, Inchul Hwang, Aimilios Chalamandaris, Pirros Tsiakoulis

Figure 1 for Investigating Content-Aware Neural Text-To-Speech MOS Prediction Using Prosodic and Linguistic Features
Figure 2 for Investigating Content-Aware Neural Text-To-Speech MOS Prediction Using Prosodic and Linguistic Features
Figure 3 for Investigating Content-Aware Neural Text-To-Speech MOS Prediction Using Prosodic and Linguistic Features
Figure 4 for Investigating Content-Aware Neural Text-To-Speech MOS Prediction Using Prosodic and Linguistic Features
Viaarxiv icon

Cross-lingual Text-To-Speech with Flow-based Voice Conversion for Improved Pronunciation

Add code
Bookmark button
Alert button
Oct 31, 2022
Nikolaos Ellinas, Georgios Vamvoukakis, Konstantinos Markopoulos, Georgia Maniati, Panos Kakoulidis, June Sig Sung, Inchul Hwang, Spyros Raptis, Aimilios Chalamandaris, Pirros Tsiakoulis

Figure 1 for Cross-lingual Text-To-Speech with Flow-based Voice Conversion for Improved Pronunciation
Figure 2 for Cross-lingual Text-To-Speech with Flow-based Voice Conversion for Improved Pronunciation
Figure 3 for Cross-lingual Text-To-Speech with Flow-based Voice Conversion for Improved Pronunciation
Figure 4 for Cross-lingual Text-To-Speech with Flow-based Voice Conversion for Improved Pronunciation
Viaarxiv icon

Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation

Add code
Bookmark button
Alert button
Dec 29, 2020
Hyojung Han, Sathish Indurthi, Mohd Abbas Zaidi, Nikhil Kumar Lakumarapu, Beomseok Lee, Sangha Kim, Chanwoo Kim, Inchul Hwang

Figure 1 for Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Figure 2 for Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Figure 3 for Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Figure 4 for Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Viaarxiv icon

Ensemble-Based Deep Reinforcement Learning for Chatbots

Add code
Bookmark button
Alert button
Aug 27, 2019
Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Yongjin Cho, Sungja Choi, Satish Indurthi, Seunghak Yu, Hyungtak Choi, Inchul Hwang, Jihie Kim

Figure 1 for Ensemble-Based Deep Reinforcement Learning for Chatbots
Figure 2 for Ensemble-Based Deep Reinforcement Learning for Chatbots
Figure 3 for Ensemble-Based Deep Reinforcement Learning for Chatbots
Figure 4 for Ensemble-Based Deep Reinforcement Learning for Chatbots
Viaarxiv icon

Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards

Add code
Bookmark button
Alert button
Aug 27, 2019
Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Sungja Choi, Inchul Hwang, Jihie Kim

Figure 1 for Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Figure 2 for Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Figure 3 for Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Figure 4 for Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Viaarxiv icon