Abstract:Multi-vector late-interaction retrievers such as ColBERT achieve state-of-the-art retrieval quality, but their query-time cost is dominated by exhaustively computing token-level MaxSim interactions for every candidate document. While approximating late interaction with single-vector representations reduces cost, it often incurs substantial accuracy loss. We introduce Col-Bandit, a query-time pruning algorithm that reduces this computational burden by casting reranking as a finite-population Top-$K$ identification problem. Col-Bandit maintains uncertainty-aware bounds over partially observed document scores and adaptively reveals only the (document, query token) MaxSim entries needed to determine the top results under statistical decision bounds with a tunable relaxation. Unlike coarse-grained approaches that prune entire documents or tokens offline, Col-Bandit sparsifies the interaction matrix on the fly. It operates as a zero-shot, drop-in layer over standard multi-vector systems, requiring no index modifications, offline preprocessing, or model retraining. Experiments on textual (BEIR) and multimodal (REAL-MM-RAG) benchmarks show that Col-Bandit preserves ranking fidelity while reducing MaxSim FLOPs by up to 5$\times$, indicating that dense late-interaction scoring contains substantial redundancy that can be identified and pruned efficiently at query time.




Abstract:In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.