Abstract:Federated Learning (FL) facilitates decentralized collaborative learning without transmitting raw data. However, reliance on fixed global rounds or validation data for hyperparameter tuning hinders practical deployment by incurring high computational costs and privacy risks. To address this, we propose a data-free early stopping framework that determines the optimal stopping point by monitoring the task vector's growth rate using solely server-side parameters. The numerical results on skin lesion/blood cell classification demonstrate that our approach is comparable to validation-based early stopping across various state-of-the-art FL methods. In particular, the proposed framework spends an average of 47/20 (skin lesion/blood cell) rounds to achieve over 12.5%/10.3% higher performance than early stopping based on validation data. To the best of our knowledge, this is the first work to propose an early stopping framework for FL methods without using any validation data.
Abstract:Federated Learning (FL) enables collaborative model training across decentralized devices while preserving data privacy. However, FL methods typically run for a predefined number of global rounds, often leading to unnecessary computation when optimal performance is reached earlier. In addition, training may continue even when the model fails to achieve meaningful performance. To address this inefficiency, we introduce a zero-shot synthetic validation framework that leverages generative AI to monitor model performance and determine early stopping points. Our approach adaptively stops training near the optimal round, thereby conserving computational resources and enabling rapid hyperparameter adjustments. Numerical results on multi-label chest X-ray classification demonstrate that our method reduces training rounds by up to 74% while maintaining accuracy within 1% of the optimal.