Abstract:In this paper, a measurement-driven framework is proposed for early radio link failure (RLF) prediction in 5G non-standalone (NSA) railway environments. Using 10 Hz metro-train traces with serving and neighbor-cell indicators, we benchmark six models, namely CNN, LSTM, XGBoost, Anomaly Transformer, PatchTST, and TimesNet, under varied observation windows and prediction horizons. When the observation window is three seconds, TimesNet attains the highest F1 score with a three-second prediction horizon, while CNN provides a favorable accuracy-latency tradeoff with a two-second horizon, enabling proactive actions such as redundancy and adaptive handovers. The results indicate that deep temporal models can anticipate reliability degradations several seconds in advance using lightweight features available on commercial devices, offering a practical path to early-warning control in 5G-based railway systems.




Abstract:An excellent self-driving car is expected to take its passengers safely and efficiently from one place to another. However, different ways of defining safety and efficiency may significantly affect the conclusion we make. In this paper, we give formal definitions to the safe state of a road and safe state of a vehicle using the syntax of linear temporal logic (LTL). We then propose the concept of safe driving throughput (SDT) and safe driving capacity (SDC) which measure the amount of vehicles in the safe state on a road. We analyze how SDT is affected by different factors. We show the analytic difference of SDC between the road with perception-based vehicles (PBV) and the road with cooperative-based vehicles (CBV). We claim that through proper design, the SDC of the road filled with PBVs will be upper-bounded by the SDC of the road filled with CBVs.