Abstract:Aesthetic Image Captioning (AIC) aims to generate textual descriptions of image aesthetics, becoming a key research direction in the field of computational aesthetics. In recent years, pretrained Multimodal Large Language Models (MLLMs) have advanced rapidly, leading to a significant increase in image aesthetics research that integrates both visual and textual modalities. However, most existing studies on image aesthetics primarily focus on predicting aesthetic ratings and have shown limited application in AIC. Existing AIC works leveraging MLLMs predominantly rely on fine-tuning methods without specifically adapting MLLMs to focus on target aesthetic content. To address this limitation, we propose the Aesthetic Saliency Enhanced Multimodal Large Language Model (ASE-MLLM), an end-to-end framework that explicitly incorporates aesthetic saliency into MLLMs. Within this framework, we introduce the Image Aesthetic Saliency Module (IASM), which efficiently and effectively extracts aesthetic saliency features from images. Additionally, we design IAS-ViT as the image encoder for MLLMs, this module fuses aesthetic saliency features with original image features via a cross-attention mechanism. To the best of our knowledge, ASE-MLLM is the first framework to integrate image aesthetic saliency into MLLMs specifically for AIC tasks. Extensive experiments demonstrated that our approach significantly outperformed traditional methods and generic MLLMs on current mainstream AIC benchmarks, achieving state-of-the-art (SOTA) performance.
Abstract:Semi-Supervised Learning (SSL) is implemented when algorithms are trained on both labeled and unlabeled data. This is a very common application of ML as it is unrealistic to obtain a fully labeled dataset. Researchers have tackled three main issues: missing at random (MAR), missing completely at random (MCAR), and missing not at random (MNAR). The MNAR problem is the most challenging of the three as one cannot safely assume that all class distributions are equal. Existing methods, including Class-Aware Imputation (CAI) and Class-Aware Propensity (CAP), mostly overlook the non-randomness in the unlabeled data. This paper proposes two new methods of combining multiple imputation models to achieve higher accuracy and less bias. 1) We use multiple imputation models, create confidence intervals, and apply a threshold to ignore pseudo-labels with low confidence. 2) Our new method, SSL with De-biased Imputations (SSL-DI), aims to reduce bias by filtering out inaccurate data and finding a subset that is accurate and reliable. This subset of the larger dataset could be imputed into another SSL model, which will be less biased. The proposed models have been shown to be effective in both MCAR and MNAR situations, and experimental results show that our methodology outperforms existing methods in terms of classification accuracy and reducing bias.