Abstract:As integrated circuit (IC) dimensions shrink below the lithographic wavelength, optical lithography faces growing challenges from diffraction and process variability. Model-based optical proximity correction (OPC) and inverse lithography technique (ILT) remain indispensable but computationally expensive, requiring repeated simulations that limit scalability. Although deep learning has been applied to mask optimization, existing datasets often rely on synthetic layouts, disregard standard-cell hierarchy, and neglect the surrounding contexts around the mask optimization targets, thereby constraining their applicability to practical mask optimization. To advance deep learning for cell- and context-aware mask optimization, we present MaskOpt, a large-scale benchmark dataset constructed from real IC designs at the 45$\mathrm{nm}$ node. MaskOpt includes 104,714 metal-layer tiles and 121,952 via-layer tiles. Each tile is clipped at a standard-cell placement to preserve cell information, exploiting repeated logic gate occurrences. Different context window sizes are supported in MaskOpt to capture the influence of neighboring shapes from optical proximity effects. We evaluate state-of-the-art deep learning models for IC mask optimization to build up benchmarks, and the evaluation results expose distinct trade-offs across baseline models. Further context size analysis and input ablation studies confirm the importance of both surrounding geometries and cell-aware inputs in achieving accurate mask generation.
Abstract:Product matching aims to identify identical or similar products sold on different platforms. By building knowledge graphs (KGs), the product matching problem can be converted to the Entity Alignment (EA) task, which aims to discover the equivalent entities from diverse KGs. The existing EA methods inadequately utilize both attribute triples and relation triples simultaneously, especially the interactions between them. This paper introduces a two-stage pipeline consisting of rough filter and fine filter to match products from eBay and Amazon. For fine filtering, a new framework for Entity Alignment, Relation-aware and Attribute-aware Graph Attention Networks for Entity Alignment (RAEA), is employed. RAEA focuses on the interactions between attribute triples and relation triples, where the entity representation aggregates the alignment signals from attributes and relations with Attribute-aware Entity Encoder and Relation-aware Graph Attention Networks. The experimental results indicate that the RAEA model achieves significant improvements over 12 baselines on EA task in the cross-lingual dataset DBP15K (6.59% on average Hits@1) and delivers competitive results in the monolingual dataset DWY100K. The source code for experiments on DBP15K and DWY100K is available at github (https://github.com/Mockingjay-liu/RAEA-model-for-Entity-Alignment).