Abstract:Under-display camera (UDC) is a novel technology that can make digital imaging experience in handheld devices seamless by providing large screen-to-body ratio. UDC images are severely degraded owing to their positioning under a display screen. This work addresses the restoration of images degraded as a result of UDC imaging. Two different networks are proposed for the restoration of images taken with two types of UDC technologies. The first method uses a pyramidal dilated convolution within a wavelet decomposed convolutional neural network for pentile-organic LED (P-OLED) based display system. The second method employs pyramidal dilated convolution within a discrete cosine transform based dual domain network to restore images taken using a transparent-organic LED (T-OLED) based UDC system. The first method produced very good quality restored images and was the winning entry in European Conference on Computer Vision (ECCV) 2020 challenge on image restoration for Under-display Camera - Track 2 - P-OLED evaluated based on PSNR and SSIM. The second method scored fourth position in Track-1 (T-OLED) of the challenge evaluated based on the same metrics.
Abstract:The task of recalibrating the illumination settings in an image to a target configuration is known as relighting. Relighting techniques have potential applications in digital photography, gaming industry and in augmented reality. In this paper, we address the one-to-one relighting problem where an image at a target illumination settings is predicted given an input image with specific illumination conditions. To this end, we propose a wavelet decomposed RelightNet called WDRN which is a novel encoder-decoder network employing wavelet based decomposition followed by convolution layers under a muti-resolution framework. We also propose a novel loss function called gray loss that ensures efficient learning of gradient in illumination along different directions of the ground truth image giving rise to visually superior relit images. The proposed solution won the first position in the relighting challenge event in advances in image manipulation (AIM) 2020 workshop which proves its effectiveness measured in terms of a Mean Perceptual Score which in turn is measured using SSIM and a Learned Perceptual Image Patch Similarity score.